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Stress vs. life (S-N) fatigue data were generated at a stress ratio of R - -1
for each of the damaged laminates. Twenty replicate specimens for each lamin-
ate were fatigue tested to failure at a single stress level (R = -1) with the
damage growth for each specimen monitored a minimum of ten times during its
life to determine the fatigue life and damage grwth distributions and pertin-
ent statistical parameters. Based on these rebults, five cycle levels were
selected for the residual strength study. Twenty-three specimens of each lamin
ate were inspected, cycled to one of the five preselected N values and Holscan-
ned again. Three of the replicates were destructively analyzed while the other
surviving specimens were tested in static tension or compression. This
sequence was repeated for each of the five N values.

Results indicated significant reduction in initial static tension and com-
pression strengths due to the damaged hole condition and a further decrease in
strength at the higher loading rate with a larger drop in compression than in
tension. Fatigue cycling of the 24-ply specimens at + 35 ksi (241 MPa)
(R =-I) produced data which were dispersed over more than two orders of magni-
tude while data scatter was slightly more than one order of magnitude for the
32-ply coupons tested at a stress level of + 22 ksi (152 MPa). As expected
from the life data, damage growth for the 32-ply specimens was more well-
behaved than for the 24-ply. However, large scatter in damage size was evident
for both laminates and so no useful relationship between damage size and life
could be established. Residual static properties of either laminate were not
adversely affected by R = -1 fatigue cycling up to the 80% probability of
survival life. Slight but insignificant increases (6-11%) in tensile residual
strength and similar decreases in compression were noted for the 32-ply lamin-
ate. oBoth tension and compression residual strength tended to increase slightl

-,#s the 1.umber of cycles completed increased for the 24-ply laminate. Residual
.,tre agh-'aould not be related to damage size, not only due to the data disper-
I sion but aaoc because no definitive change in residual strength was observed.

A limited test .program was conducted to assess the effect of different fatigue
and env immental test conditions on residual strength and damage growth. The
variables evaluated were: A) Specimen restraint (4-bar support); B) stress
Pratio, R - -0.3 and C) elevated temperature, 180OF (820C). The Case A load-
-4mg produced lives which were within the scatter band of tests conducted with
the platen supports and very similar damage growth and residual strength be-
havior. *jnder the R =-0.3 loading both laminates completed 2 million cycles
without fiflure. Most notable was the change in damage development, especia-
lly'for the 24-ply laminate for which essentially no growth in the width
direction was evident with extensive growth in the length direction.- This
longitudinal damage growth reduced the notch acuity resulting in significant

* ' increases in tensile residual strength with increasing number of cycles com-
pleted. Damage growth for the 32-ply laminate at R - -0.3 was also greater
in the length direction, but growth in both directions did occur. For Case C,
there appeared to be an order of magnitude decrease in life due to the elevated

* I temperature exposure during cycling with more rapid initial growth for the
* 24-ply laminate. The life of the 32-ply laminate appeared to be shortened also

but not as severely.
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PREFACE I
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AFWAL/FIBE, was the Air Force Program Monitor.
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QUALITY COYTROL PTAI

Thts Quality Control Plan has been prepared in compliance with the IT. S.

Air Force contract F33615-77-C-3084.

Manufacturing and quality assurance procedures will be applied to material

and laminates, as described below, to ensure quality, uniformity and trace-

ability of test specimens.

1. Material Acquisition

Narmco T300/5208 graphite/epoxy prepreg material conforming to Lockheed

Material Specification C-22-1379/111 will be acquired for this program in

three procurements. A new material batch will be obtained for each of Task

I, II, and III. Other materials required for the fabrication of test

laminates will be purchased to the requirements given in the Lockheed

Engineering Purchasing Specification (EPS) Manual, to the extent indicated

in Section 3. Fiberglass for the specimen tabs will be acquired to Lockheed

Material Specification LCM C-22-1032/141.

2. Material Acceptance

The prepreg material supplier will be required to provide a certificate of

conformance, including test data, resin/catalyst age, and date of mixing with

each delivery. Lockheed Quality Assurance laboratories will then conduct

acceptance tests on the delivered material in confirmation of supplier data.

These tests will include:

A Uncured Properties

0 Fiber orientation

" Resin content
* Volatiles content

* Resin flow
* Gel time
* Infrared Analysis
* Areal Weight
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* Mechanical and Physical Properties of Cured Material

* Void Content
9 Specific Gravity
* Cured Resin Content or Fiber Volume
9 Interlaminar Shear
a Longitudinal Tensile Strength and Modulus
* Longitudinal Flexural Strength and Modulus
* Cured Ply Thickness

The test methods and acceptance limits shall be as specified in the applicable

material specifications, C-22-1379/111 and C-22-1379A. Materials not conform-

ing to the requirements of the Specifications will be rejected.

Material specifications further stipulate preparation-for-delivery provisions

covering date of shipment, allowable time and temperature in transit, and

vapor-tight packaging required for supplier and transporter conformance.

Materials requiring refrigerated storage will be placed in Quality Assurance-

approved refrigerators immediately upon receipt. Pending acceptance by the

Quality Assurance laboratory, all materials will be kept segregated and with-

held from use. After acceptance, each container, roll, or spool of material

will be stamped or otherwise approved by Quality Assurance and controlling

labels will be attached.

3. Material Processing

This section establishes the requirements and procedures for the lamination

of graphite/epoxy (T300/5208) test panels, fabrication of glass/epoxy tab stock

and bonding of tabs to coupons.

3.1 Applicable Documents and Materials

The following documents form a part of this procedure to the extent specified

herein.
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3.1.1 Lockheed Materials Specifications

Lockheed Material Specification, C-22-1379A Graphite Fiber Non-Woven Tape

and Sheet, Resin Impregnated, General Specification for.

Lockheed Material Specification C-22-1379/111 Graphite Fiber Non-Woven Tape

and Sheet, 350 ksi Strength, 33 MSI Modulus, 350°F Curing, Epoxy Preimpregnated.

Lockheed Material Specification LCM C-22-1032/141 Glass Fabric/Epoxy Pre-

impregnated, 350°F Cure.

3.1.2 Commercial Materials

3.1.2.1 The following commercial materials, covered by the Lockheed Engineer-

ing Purchasing Specification (EPS) Manual, form a part of this procedure to the

extent specified herein.

Material EPS Item No.

Vacuum Bag Nylon Film 22.9001

Parting Agent Film 22.9004

Porous Release Cloth 22.9030

Peel Ply 25.5910

Stick Contact Adhesive 30.0650

3.1.2.2 The following commercial materials not covered by the Engineering

Purchasing Specification Manual are required for use in this procedure.

American Cyanamid Co. FM-400 Epoxy Adhesive Film,
0.07 lbs/ft , 350°F Cure

Air Tech International Inc. Flashbreaker 5 Pressure
Sensitive Tape

3.2 Material Control

AU materials shall conform to the applicable specifications.

3.2.1 Storage and control requirements shall be as specified in Table Al.

Refrigerated material shall be stored in sealed, moisture vapor proof

containers.
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3.2.2 Refrigerated materials shall be thawed until moisture no longer

condenses on the moisture-proof containers.

3.2.3 All perishable materials shall have had validation tests performed

within 30 days of use, if initial storage time limit has been exceeded.

Validation tests are the same as those shown in Table Al.

3.2.4 A manufacturer's identified defects (MID's)record is furnished with

each roll of Gr/Ep by the material supplier. This record shall be furnished

to the Composites Laboratory with each roll of Gr/Ep.

3.2.5 Stored perishable material in which visible water is observed in

the bag shall be rejected.

TABLE Al - MATERIAL CONTROL

Max .Allowed
Out Time

Max. Maximum Storage Time Minimum During Proc.
Storage Before Retesting, Da Required @75 0 F & 550

Material Temp. Initial Subsequent Tests R.H.

Gr/ep O°F 18o 60 14 days
Prepreg

Adhesive 0F 180 90 Climbing 10 days
Film Drum PeelA @ -60

Flow and gel time, room temp. flexural and short beam shear,
specific gravity and resin content.

/2 See applicable Material Specifications for test methods and requirements.
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3.3 Environmental Control

3.3.1 All work shall be done in controlled areas to avoid degradation of the

materials and laminates. Temperature shall be between 65-80°F and relative

humidity shall not exceed 55%.

3.3.2 All incoming air into controlled areas shall be filtered by at least

a 1 -inch thick throw-away type or permanent washable type filter or by an

equivalent method. Inspect and clean filters monthly.

3.4 Tooling

3.4.1 All tools shall be designed and coordinated to produce parts that

meet all requirements of this specification and the Engineering drawing. Tools

shall have the minimum mass necessary for dimensional and thermal control.

3.4.2 All tool plates used for curing laminates shall be aluminum. Thick-

ness of the caul plate shall be 0.500 in. with a tolerance of ± 0.003 in.,

flat and parallel. Caul plates used on top surface of laminate under the

vacuum bag shall be aluminum sheet 0.064 in. standard thickness.

3.4.3 Tooling parting agents and cleaners shall not contaminate the

laminates or interfere with subsequent bonding, finishing and inspection.

3.5 Material Preparation

3.5.1 Templates or patterns shall be placed on the prepreg in such a way

as to ensure that the fiber direction is in accordance with Engineering drawing

requirements and does not include any MID's flagged by the supplier (see 3.2.4)

3.5.2 Panels will be laid-up such that the edges of tape are parallel

or perpendicular to the required fiber direction within 10.
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3.5.3 All areas from which material will be cut shall be checked prior to

cutting for the defects defined in C-22-1379, Quality and Condition Require-

ments, which may not have been flagged by the manufacturer. Material contain-

ing unacceptable defects will not be used. Patch plies are not permitted.

3.5.4 Plies shall be cut with sufficient care so as not to disorient fibers.

Cutting tools shall be cleaned prior to use on prepregs.

3.5.5 No ply end butt splices are permitted in the laminate assembly.

3.6 Tool Preparation

3.6.1 The tool molding surfaces shall be solvent wiped and all resin re-

moved prior to layup.

3.7 Panel Lay-up

3.7.1 The preimpregnated graphite tape shall be placed on the tool in

the sequence and orientation specified on the Engineering drawing or Engineer-

ing Test Request. As each ply is placed on the assembly, it shall be checked

for the defects defined in C-22-1379 prior to applying the ply firmly in place.

A check-off system shall be used to assure proper orientation and stacking

sequence of each ply.

3.7.2 The surface of each ply shall be wiped with a teflon, polyethylene or equiv-

alent device to give maximum adhesl o the previous ply. Wiping shall be done

only in the direction of the fibers to prevent fiber separation and distortion.

Wiping the surface should be done only when the orientation of th. tape edge

has been verified to be within +10 of the drawing requirement. Excessive

pressure shall not be applied during wiping and wiping shall be kept to a

minimum.

3.7.3 Parallel plies shall be laid up so that edge splices are staggered a

minimum of 1.0-inch in adjacent plies and not coincide within a 5 ply thickness.
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3.7.4 Edge splices shall be butted flush, ± 0.03 inch.

3.7.5 Entrapped air in blisters that cannot be wiped out without distorting

fibers shall be removed by puncturing the blister with a needle or pointed sharp

blade as often as needed and wiping in the direction of the fibers toward the

puncture. Care shall be taken not to damage the under ply fibers.

3.7.6 Where permanent edge steps or dams are not incorporated in the tool

for edge thickness control, an edge dam shall be built around the perimeter

of the laminate. The dam shall not be more than 0.06-inch from the laminate

edge and shall be of sufficient height to enclose the laminate. The bleeder

may not extend over the dam surface. Joints in the dam shall be kept to a

minimum. Dam joint gaps shall not exceed 0.03-inch.

3.7.7 A dry peel ply of fabric (EPS 25.5910) or equivalent shall be

placed on both sides of the layup and wiped smooth.

3.7.8 A bleeding and bagging system of the following construction shall

be used.

(a) Cure plate

(b) Separator film - perforated parting agent film or porous

release cloth.

(c) Mochburg CW1850 bleeder paper (1 ply for 4 plies of

prepreg.)

(d) one ply of porous Teflon-coated glass cloth (DuPont Armalon)

(e) Nylon peel ply

(f) Graphite/epoxy laminate

(g) Nylon peel ply

(h) One ply Armalon

(i) Mochburg CW1850 bleeder paper (4:1 ratio)

(j) Release film

(k) Caul plate (aluminum)
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(1) One ply Mochburg CW1850

(m) Release film

(n) Glass breather

(o) Nylon film vacuum bag placed over the laminate and sealed

to the tool face.

3.7.9 Curing - Pressure and cure cycle should be within the limits given

in Table A2.

TABLE A2- CURE CYCLE

1. Apply full vacuum

2. Heat to 275 0 ± 50F @ 2-30F/min.

*3. Dwell @2750 + 50F for 3O t 1 minutes
+4. Apply lo0 - 5 psi vent vacuum to air @20 psi.

5. Heat to 355 t5 OF @2-30 F/min.

6. Cure for 120 + 10 min. @ 355 t 50F.

7. Cool to 140 + 50F under pressure @less than 40F/min.

8. Cool to room temperature.

* NOTE: Dwell time started when temperature reaches 2650 F.

3.8 Laminate Control Specimens

Each panel will be laid up to contain an excess strip at least one inch wide

and running either the length or width of the panel. The strip must be

located at least one inch from the panel edges.

3.8.1 Laminate control coupons will be cut from this strip for the

determination of resin content, specific gravity and average ply thickness.

Test requirements are given in Table A3.

3.8.1.1 Void volume fraction will also be measured on laminate control

coupons from selected panels using standard metallographic techniques. This

method will be used to confirm results calculated from the acid digestion and

density measurement values.
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TABLE A3 TEST REQUIREMENTS

Test Requirements

Fiber Volume 65 - 2%

Specific Gravity 1.56 - 1.60

Thickness/P]y .0046 - .0053 inch
(Report for information only)

3.9 Workmanship

All laminated details and bonded assemblies shall be of highest quality.

Conditions in excess of the following shall be cause for rejection.

3.9.1 There shall be no evidence of surface cracking, uncoated fibers,

excess resin, pits, tackiness or other indications of defective resin

characteristics or distribution.

3.9.2 No visual delaminations are allowed.

3.9.3 Tne laminate shall be essentially void free. Calculated voids shall

not exceed 1.0 volume percent without special engineering review.

3.9.)' -,r.rkles

3.9.4.1 No wrinkles containing graphite fibers are permitted. Resin

wrinkles caused by peel ply gathering or by the bleeder system shall not be

cause for rejection if the resin ridge can be removed without damaging the

- qgraphite fibers using 320 grit or finer sandpaper.

3.9.5 The presence of foreign material, e.g., separator film, masking tape,

etc., in the part is not acceptable.

3.9.6 There shall be no sharp or frayed edges, nor edge delaminaticns

resulting from trimming and routing operations.
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3.10 Cleanup

Chemical strippers shall not be used in any way to remove excess resin or

adhesive. If removal is necessary, it shall be done with an abrasive, and

shall not damage any surface graphite fibers.

3.11 Records

The following records are required for permanent retention and traccq-h 4ltv.

1. Temperature-pressure-vent-time profile record for each

cure cycle.

2. Thermocouple locations.

3. Material batch and roll number, acceptance laboratory report

number and cumulative out-time up to the time of vacuum

application.

4. A completed autoclave record sheet as shown in Figure ,Al.

3.12 Machining of Test Specimens

Specimens are to be machined using aluminum backup sheets to the dimension

shown in Figure A2,Drawing TL 1038. Specimen cuts will be made parallel to

the panel edge to + 1 degree. Cutting rates will be chosen to minimize edge

damage. Specimen dimensional tolerances and inspection requirements are

given in the Task I Test Plan. All specimen shall be weighed and the weight

recorded on the specimen checklist form following fabrication.

3.13 Fabrication and Bonding of Glass Fabric/Epoxy Grip Tabs

3.13.1 Grip tab sheet material shall be fabricated by laminating the required

number of plies of Style 181, 1581, or 7581 glass fabric/epoxy prepreg. For

most standard coupons, the laminate consists of 6 plies or 3 plies in thickness

depending on the type of coupon. Thicknesses and other dimensions shall be in

accordance with Lockheed Drawing No. TL 1038. Tab dimensions shall be as

specified on specimen drawing.
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Figure Al: Sample Autoclave Record Rur #

ETR/Dwg.# Panel I.D. Matl. Code

Q.A. Lab. Report # Made for Date

I. Description of Materials
Date

Designation Batch# Roll# Mfd.

No. of Plies Orientation
CURE CYCLE (NARMCO)

II. Cure Press......____ i 1. -Apply fuei vacuum

Cure Temp oF 2. Heat to 2750 + 50F @ 2-30F/min.

Cure Time min. *3. Dwell @2750 + 50F for 301 1 min.

Vac. Bag _inch-Hg 4. Apply 1O0 5 psi & vent vac to air @
20 psi.

rIr.Autoclave Pressurization 5. Heat to 355 + 5°F @ 2-3°F/min.
6. Cure 120 - 10 min. @ 355 - 5°F

Time @ start 7. Cool to 140 + 5°F under press. @<4 0F/min.Time @press. _____Delta@Timesm. 8. Cool to R.T.Delta Time min.

IV. Temp 0 * NOTE: dwell time starts when tempIV . Tempreaches 265°F.

1. Temp _ 0 F @ lay-up V. %R.H. @ lay-up

VI. TIME RECORD
1 2 3 4 5

Temp Time Temp Time Temp Time Temp Time Temp Time

Start heat
At temp.
Time to temp min.
Time @ temp min. -OFF

Heat-up rateOF/min.
Cool-down rate°F/min.__

VI. Panels VIII. Bleeding & Bagging

I.D. Size(in.) No. Meas. nylon bag
x Plies Thick 181 glass breather

vac pac
Mochburg (i ply)

_caul plate
vac pac
Mochburg (4:1 ratio)

IX. Comments armalon
nylon peel ply
LAMINATE
nylon peel ply
armalon

Signature of Inspecting Engineer Mochburg
vac pac
cure plate

A12 NOTE: Ldxminate completely dammed
perforated vac pac taped to dam.
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3.13.2 The material used for grip tab stock shall be glass/epoxy prepreg

conforming to Lockheed Material Spec. LCM C-22-1032/141. This material shall
0

be cured at 350 F for one hour under a pressure of 35 psi plus vacuum. A

caul sheet shall be used under a vacuum bag for pressure application.

3.13.3 The adhesive used for bonding tabs to coupons shall be American

Cyanamid Co. FM-400, 0.07 lbs/ft 2 . Aluminum caul plates i to -inch thick

shall be used to apply bonding pressure on tabs. Cure adhesive at 350 F
+ 0
- 5 F for 60 to 70 minutes using 15 + 1 psi positive pressure on bondline (no

vacuum). Cool to 170OF under pressure.

4. QUALITY ASSURANCE PROVISIONS

To produce test panels of consistent quality, strict adherence to all the

minimum Engineering requirements of Section 3 is vital. The requirements of

Section 4 are intended to outline the minimum amount of inspection and

surveillance before, during, and after processing testing to confirm that

adherence has been achieved.

4.1 Material

Verification shall be made that only adhesives and prepreg materials are used

that are approved to the material specifications specified.

4.1.1 Adhesive or prepreg material which is stored below room temperature

shall be wrapped in a closed impermeable bag at all times. Evidence of

material cracking or moisture condensation on the material is cause for

rejection. Exposure to ambient temperature shall be minimized.

4.1.1.1 Adhesive or prepreg material which is withdrawn from storage and left

out 30 minutes or more before returning to the box, shall have the out-time

marked on an appropriate tag attached to the roll. Material for which

accumulated out-time at ambient temperature exceeds the allowable out-time

given in Table Al, shall not be used.

A 14/



4.1.2 All adhesive and prepreg materials shall be controlled as to batch,

lot, and roll numbers for traceability.

4.1.2.1 Material which has exceeded the allowable storage shall not be used

unless tested within one week prior to use.

4.1.2.2 All refrigerated materials shall be checked for compliance to 3.2.2

prior to use.

4.2 Panels and coupons shall be clearly marked before and after application

of tabs to indicate the bag side of the graphite/epoxy laminate as originally

cured. Panels shall be identified with a number including material code and

autoclave run number. Coupons shall be identified with panel number from which

cut and a dash number indicating location.

Example: iLY 556-lA

Coupons shall be numbered consecutively as they are cut from panels to indicate

relative location in the panel.

4.3 Equipment and Facilities Control

Equipment and facilities used for materials storage, processing, and inspection

shall be controlled in accordance with ICP79-1053.

4.4 An effective quality control system shall be provided to ensure com-

pliance with the requirements of this procedure as specified in the following

sections.

4.4.1. Material Acceptance testing will be performed by Lockheed Quality

Assurance Laboratories.

4.4.2 Panel and tab fabricating and tab bonding will be accomplished by

personnel of the Composites Laboratory at Rye Canyon Research Laboratories.

layup and cure of each panel will be witnessed and inspected by Engineering.
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4.4.3 Specimens will be machined to required dimensional tolerances by
machinists at the Rye Canyon Shops. Dimensional inspection of specimens will

be the responsibility of Lockheed Quality Assurance.

4.4.4 The principal investigator will have final acceptance/rejection

authority for material, panels and specimens.

4.4.5 An engineering approved autoclave record will be maintained for each

panel.

4.4.6 A Quality Assurance specimen checklist such as shown in Figure A3

shall be completed for each specimen verifying its conformance with the

requirements of the Quality Assurance Plan and Test Plans.

4.5 Non-Destructive Inspection

4,.5.1 All test panels shall be non-destructively inspected for internal

defects by ultrasonic "C" Scan procedure. Standard reference 2 mil thick

teflon pads of 1/8-inch to I/4-inch diameter will be placed at one corner of

each panel. A permanent record of the C-Scan results shall be retained with

the records required in 3.11.

4.5.1.1 Specimens will not be cut from areas in the panels which show

indications comparable to the standards.

4.5.2 Location and size of holes and intentionally induced defects will be

measured by Engineering based on Holosonics Series 400 Holoscan results.

iA
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Figure A3. Sample Specimen Checklist

Date:

Specimen No. Laminate Type

Required
No. of Plies Orientation

Acc. Rej. Measured Req'd Date Spec. Wt.

EI L] 1. % Fiber Vol. 65 2%

] 2. % Resin Vol. 35 2%

U3 3. % Void Cont.

Li II a. by density < 1%

] b. by metallography 1%

Li Li Specimen Thickness:

L L Avg. Thk. Max. Deviation Req'd Dev.: ±-0.003

Li Li Specimen Width

L Avg. Width Max. Deviation Req'd Avg: 300 7 0.02

Dev: ± 0.002

Li _ Li Tab Mismatch Req'd: less than 0.01 in.

Li1 n Tab parallelism Req'd: within 0.02 inches

--Li ] Tab overhang Req'd: less than 0.15 inches

Edge damage or fiber separaticn

gm. Specimen weight following fabrication.

Date weight measured.
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TABLE B1 a
WEIGHT MEASUREMENTS FOR

FATIGUE LIFE DISTRIBUTION SPECIMENS - TASK II

24-PLY 32-PLY

Spec. Initial Pre-Test Spec. Initial Pre-Test

ID Weight, gMs. Weight, gms. ID Weight, gms. Weight GMs.

HC-26 187.2 186.8 MB-17 231.9 232.5

IB-13 191.2 190.5 QA-8 234.1 233.1

CC-25 190.4 - LC-30 230.7 232.0

DA-6 190.2 189.8 JC-24 229.9 231.1

AC-30 191.4 - SA-6 230.1 230.0

BC-29 192.4 191.8 PA-5 231.8 230.3

FA-3 191.7 192.5 SC-30 228.9 231.3

AA-2 191.1 191.1 KC-23 233.1 231.1

EA-6 189.4 189.7 NA-3 235.4 231.9

HC-27 188.3 188.3 MC-27 232.4 231.2

IC-25 190.0 189.5 RA-8 232.8 231.6

CA-1 191.9 192.0 QC-29 234.1 233.2

BB-17 191.1 191.2 LC-24 231.3 230.6

DC-30 190.6 190.6 PB-19 233.0 233.5

GC-27 183.3 183.4 JA-1 229.4 233.2

EB-16 191.9 190.5 SC-24 228.6 229.2

AB-15 191.5 192.9 JA-6 235.5 234.5

IB-19 191.7 191.3 PC-23 231.5 231.2

DC-28 191.6 190.9 LA-6 230.4 231.9

FC-23 192.3 103.1 RB-14 228.6 232.3

a = Listed in order tested.
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TABLE B2
WEIGHT MEASUREMENTSa FOR

SPECIMENS TESTED FOR RESIDUAL STRENGTH AFTER FATIGUE CYCLING TO N5
TASK II

24-PLY N = 40,000 CYCLES 32-PLY N 28,000 CYCLES
5 5

Spec. Initial Pre-Test Spec. Initial Pre-Test
ID Weight, gms. Weight, gms. ID Weight, gMs. Weight Gms.

GA-9 187.6 188.8 KA-5 233.3 233.3
BC-25 189.4 190.9 PB-13 234.6 232.0
HB-3 188.7 b RA-5 231.8 231.6
CB-19 192.3 192.5 JC-23 230.7 231.5
DC-26 190.7 b MA-4 230.8 232.4
GA-3 189.9 b PB-12 232.6 233.2
FC-27 194.5 193.2 NB-14 230.8 234.3
HC-30 188.8 187.6 QC-31 233.3 232.7
BC-26 189.9 b SB-18 233.1 232.3
EB-15 190.2 b KB-14 231.4 232.1
CA-3 190.8 b LC-26 232.2 233.2
CC-27 190.0 190.6 PA-7 232.6 232.8
AA-8 187.6 b SB-17 231.4 230.5
DB-13 191.2 b JB-18 233.2 233.8
IB-16 193.2 191.8 RC-25 231.9 232.1
CC-24 190.6 192.0 LB-19 233.4 232.3
AC-26 193.2 193.7 NB-18 233.5 234.5
FA-7 194.8 b RC-31 231.2 232.2
GA-1 183.4 b MB-15 234.6 233.6
En-9 188.3 189.5 KB-17 230.9 232.0
GB-15 191.1 191.1

a = Listed in order tested
b = Failed in fatigue
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TABLE B3 a
WEIGHT MEASUREMENTS FOR

SPECIMENS TESTED FOR RESIDUAL STRENGTH AFTER FATIGUE CYCLING TO N4

TASK II

24-PLY N4 = 20,000 CYCLES 32-PLY N4 = 20,000 CYCLES

Spec. Initial Pre-Test Spec. Initial Pre-Test
ID Weight, gms. Weight, gis. ID Weight, gms. Weight Gns.

BC-28 192.1 b NB-17 232.5 233.5

HC-29 187.4 b JB-15 231.4 233.1
AC-25 191.6 185.3 QC-30 230.1 232.2
HB-12 189.7 b LA-5 232.4 232.0

GC-24 190.6 188.9 MB-18 229.5 231.8
BA-8 189.1 b SC-23 232.1 231.0
FB-15 193.4 190.9 RC-24 230.3 230.9
EC-26 190.7 b LA-4 231.4 230.0
IB-14 190.2 b MB-13 231.8 232.8
CB-17 191.8 191.0 KB-12 232.0 231.3
CA-9 187.5 b NA-6 232.4 233.4
GC-25 198.2 198.4 RC-22 229.7 231.3
AA-3 191.5 192.8 PB-17 234.4 233.2
BB-14 192.2 192.7 SA-9 234.3 b
DB-I4 192.4 190.3 JB-11 234.5 234.7
FA-2 190.4 191.6 QC-22 232.5 232.0
FC-29 190.6 191.7 SC-27 230.2 230.4

EB-17 188.8 b LC-31 233.2 230.0
AB-17 188.7 b MB-11 229.1 230.0
CA-4 194.4 b QB-13 233.4 232.7
BC-22 190.8 b RA-7 231.5 231.7

a Listed in order tested
b a Failed in fatigue
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TABLE Ba
WEIGHT MEASUREMENTSa FOR

SPECIMENS TESTED FOR RESIDUAL STRENGTH AFTER FATIGUE CYCLING TO N3
TASK Il

24-PLY N3 = 12,000 CYCLES 32-PLY N3 = 10,000 CYCLES

Spec. Initial Pre-Test Spec. Initial Pre-Test
ID Weight, gms. Weight, gs. ID Weight, gMs. Weight Gms.

DB-15 188.9 189.7 SA-5 230.9 231.9
AC-27 191.5 192.3 PA-4 235.3 234.8
DA-10 185.4 187.6 LA-7 231.2 231.8
BC-21 192.0 191.3 PA-1 230.5 233.1
FB-18 188.6 b NB-16 231.4 235.6
CA-6 187.7 b KA-7 235.1 232.9
IA-2 189.6 189.8 MC-29 231.0 231.5
EA-4 191.1 b QB-12 231.8 231.6
GB-18 190.4 189.3 RB-12 231.2 231.7
HB-9 190.7 b LC-27 231.6 234.5
DA-2 190.5 b SA-3 232.3 231.7
AA-5 192.0 192.8 JC-28 233.1 233.2
CB-14 189.9 189.9 NB-13 231.8 233.4
HC-21 189.1 188.6 KC-22 230.2 233.4
GA-5 189.9 189.6 MC-25 232.0 232,5
IA-6 190.9 190.0 LC-23 229.7 233.6
FA-1 189.6 190.1 SB-11 230.4 230.6
BB-19 191.6 191.3 QC-23 231.8 234.4
IA-8 190.9 190.5 JC-27 233.6 235.5
CA-2 189.7 192.4 PC-27 232.3 234.5
HA-6 187.8 188.0

a = Listed in order tested
b a Failed in fatigue
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TABLE B5 a
WEIGHT MEASUREMENTS FOR

SPECIMENS TESTED FOR RESIDUAL STRENGTH AFTER FATIGUE CYCLING TO N2
TPSK II

24-PLY N2 = 8,000 CYCLES 32-PLY N2 = 5,000 CYCLES

Spec. Initial Pre-Test Spec. Initial Pre-Test
ID Weight, gms. Weight, gms. ID Weight, gms. Weight Gms.

FC-26 193.3 193.2 MB-16 231.6 232.9
DC-29 189.5 190.6 NC-26 234.6 234.0
AA-9 189.9 b KC-28 232.5 232.1
BC-30 191.5 191.6 QA-1 230.8 231.8
GC-22 187.8 186.9 JA-4 231.3 233.2
AA-7 192.6 192.2 QA-9 232.7 234.2
IB-15 190.7 190.9 SB-13 230.0 232.1
FB-11 192.0 191.8 NC-22 230.2 233.5
CB-16 192.1 191.2 KB-16 232.9 233.7
EC-24 188.3 188.8 LA-2 229.2 233.2
BB-12 192.1 b PB-15 233.6 230.8
DA-5 190.9 189.9 RB-20 228.7 229.6
GA-6 189.7 189.4 MA-6 232.4 231.6
HB-16 191.2 190.3 RC-27 229.1 232.9
DB-18 188.8 188.7 JA-5 235.4 234.5
HB-15 192.1 b LB-16 231.3 235.1
BA-6 190.4 b KC-24 228.8 230.2
CB-12 189.2 189.8 PC-25 230.2 232.1
AC-24 191.3 192.8 NA-2 233.1 233.0
EA-5 188.3 188.7 QC-28 232.2 233.1
EC-29 188.1 188.0
IC-27 188.8 190.4

a = Listed in order tested
b = Failed in fatigue
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TABLE B6
WEIGHT MEASUREMENTSa FOR

SPECIMENS TESTED FOR RESIDUAL STRENGTH AFTER FATIGUE CYCLING TO N1
TASK II

24-PLY N 4,000 CYCLES 32-PLY N 1,000 CYCLES

Spec. Initial Pre-Test Spec. Initial Pre-Test
ID Weight, gms. Weight, gms. ID Weight, gms. Weight Gms.

EA-7 187.1 189.2 LA-9 229.8 231.1
HC-24 188.6 190.2 QA-6 232.8 234.0
CC-23 190.3 191.9 NA-4 233.7 234.1
GB-16 190.2 191.6 SB-19 229.1 231.5
FC-25 193.8 194.5 MA-8 230.7 232.1
BA-9 187.8 189.5 KC-27 230.2 232.1
DA-3 191.2 192.4 JB-13 232.6 234.1
AB-13 188.3 191.3 PA-3 232.4 232.9
IA-1 190.1 189.7 MC-28 232.6 230.8
EC-27 189.5 190.1 SA-7 230.1 232.4
FC-24 191.8 193.6 PA-9 232.8 232.3
GA-4 187.8 190.5 QB-17 231.4 231.7
BA-1 186.8 188.9 NC-30 232.7 233.6
EC-25 190.6 191.9 RA-2 233.9 232.4
DC-22 186.4 189.7 RA-9 233.9 232.7
AC-29 192.1 193.4 JC-22 230.8 231.3
HA-7 188.6 190.3 LA-3 230.1 234.4
AB-14 191.4 193.4 NC-28 230.5 232.4
HA-2 189.1 190.2 JB-16 232.6 233.4
FB-19 190.2 191.4 KB-18 232.4 233.7

a Listed in order tested
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TABLE B7 a
WEIGHT MEASUREMENTS FOR

FATIGUE LIFE DISTRIBUTION SPECIMENS - TASK III

24-PLY N4 = 20,000 CYCLES 32-PLY N4 = 20,000 CYCLES

Spec. Initial Pre-Test Spec. Initial Pre-Test
ID Weight, gms. Weight, gms. ID Weight, gms. Weight Gms.

FATIGUE CONDITION A - 4 BAR SUPPORT

AA-8 192.2 192.6 DC-27 238.0 237.3
BC-23 193.6 193.2 EB-18 236.2 236.7
CA-6 197.9 197.7 FA-3 232.7 230.5

FA-8 232.3 233.7

FATIGUE CONDITION B - R = -0.3

BC-24 195.9 194.6 FC-30 232.3 232.4
CC-27 190.7 191.6 EA-8 235.0 -
AB-11 190.9 190.6 DC-31 237.7 238.0

FATIGUE CONDITION C - 180°F (82°C)

BB-12 191.2 193.4 FB-19 233.0 233.5
CA-4 199.3 199.6 DC-28 234.6 233.6
AA-4 190.6 192.2 EB-15 236.1 337.0

-Bi
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1.R
JABLE B8

WEIGHT MEASUREMENTS FOR SPECIMENS TESTED FOR b
RESIDUAL STRENGTH AFTER FATIGUE CYCLING UNDER CONDITION A

TASK 111

24-PLY 32-PLY

Spec. Initial Pre-Test Spec. Initial Pre-Test
ID Weight, gms. Weight, gms. ID Weight, gms. Weight Gms.

N1 = 4,000 CYCLES N 1,000 CYCLES

BA-7 191.9 191.8 DB-13 235.7 236.3
AB-14 190.4 192.2 EA-1 239.4 230.6
CA-9 189.5 191.1 FC-28 236.6 234.9
CA-2 190.4 191.0 FC-23 233.3 233.0
AC-26 190.6 191.6 EC-22 235.8 231.9
BC-27 196.7 198.0 DC-26 239.2 238.2

N2 = 8,000 CYCLES N2 = 10,000 CYCLES

CC-29 190.8 192.5 SC-23 237.4 237.6
BA-4 191.0 190.6 FB-14 231.5 231.4
AB-16 192.1 192.2 EB-17 237.1 236.2
CA-1O 191.9 191.1 FA-1O 233.7 231.8
CA-7 192.4 191.0 EA-7 237.0 233.8
AB-19 191.5 191.1 DB-18 235.6 234.2

N3 = 12,000 CYCLES N3 = 20,000 CYCLES

BB-11 192.6 192.6 DB-11 237.5 236.8
CC-21 191.0 191.5 FA-1 238.0 237.1
AA-7 193.6 190.7 EB-20 237.5 236.2
AC-31 195.8 197.4 DA-3 235.7 236.6
CC-26 190.8 190.2 EC-23 236.0 233.7
BB-13 196.5 196.5 FA-2 232.4 231.1

a Listed in order tested
b = See Table XXXV,Volume II
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TABLE B9
WEIGHT MEASUREMENTSa FOR SPECIMENS TESTED FOR

RESIDUAL STRENGTH AFTER FATIGUE CYCLING UNDER CONDITION B
TASK III

24-PLY 32-PLY

Spec. Initial Pre-Test Spec. Initial Pre-Test
ID Weight, gms. Weight, gms. ID Weight, gms. Weight Gms.

N1 = 4,000 CYCLES NI  20,000 CYCLES

BC-25 193.2 193.3 EA-6 235.9 235.5
AB-12 190.5 191.2 ec-27 238.5 237.0
CC-28 190.5 189.8 DA-5 240.8 242.3
AC-25 190.5 190.9 DA-3 235.7 236.6
BC-22 193.2 193.5 EC-23 236.0 233.7
CB-16 190.6 190.7 FA-2 232.4 231.1

N = 40,000 CYCLES N 250,000 CYCLES

AB-20 190.3 189.5 EC-21 236.7 236.9
CA-3 191.5 190.5 FC-29 239.7 237.2
BB-19 193.5 193.1 DA-8 240.5 239.5
BB-15 192.3 191.0 EA-9 236.7 235.9
CB-13 190.0 190.0 DC-30 233.3 233.6
AA-10 190.9 189.5 FA-7 235.5 233.1

N3 = 250,000 CYCLES N3 =106

BA-l0 194.0 193.1 EB-16 235.0 -
AC-24 191.8 - DB-14 235.6 234.5
CB-15 190.2 189.0 FB-13 234.3 232.3
AB-15 191.3 192.3 DB-15 237.4 238.4
CB-11 190.4 - EC-31 239.6 242.2
BC-31 195.5 195.3 FB-20 233.6 233.9

a Listed in order tested

b = See Table XXXV, Volume II
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TABLE B10
WEIGHT MEASUREMENTS FOR SPECIMENS TESTED FOR

RESIDUAL STRENGTH AFTER FATIGUE CYCLING UNDER CONDITION C
TASK III

24-PLY 32-PLY

Spec. Initial Pre-Test Spec. Initial Pre-Test
ID Weight, gms. Weight, gms. ID Weight, gms. Weight Gms.

NI = 50 CYCLES N 1 1,000 CYCLES

AA-3 191.2 191.5 EB-19 235.6 235.2
BB-20 192.8 193.9 FB-15 233.7 233.6
CB-19 191.6 191.8 DB-12 238.5 237.3
BC-28 198.6 198.4 EB-12 237.4 237.8
AC-23 190.5 190.6 FC-21 237.5 238.6
CB-14 190.3 190.7 DC-22 234.8 236.0

N2 = 300 CYCLES N2 = 4,000 CYCLES

AB-13 191.6 191.3 DA-1 234.9 235.1
BB-14 197.1 196.8 EC-29 235.4 235.5
CA-5 199.9 200.0 FA-6 234.4 232.3
CC-30 190.1 189.1 FA-5 232.3 232.5
BB-17 197.1 197.4 EC-28 232.8 232.1
AA-5 191.6 191.3 DB-20 236.1 237.0

N3  1,000 CYCLES N 8,000 CYCLES

3 3
CB-20 192.4 192.2 DA-1O 240.9 241.5
AA-6 190.7 191.1 EC-27 240.8 242.3
BB-16 197.4 196.5 FC-22 233.1 232.6
AC-30 188.8 188.8 DB-16 238.0 237.1
CB-18 190.0 189.1 EA-5 234.8 233.9

BA-9 191.4 190.0 F-11 230.9 232.6

a Listed in order tested
b See Table XXXV, Volume II
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APPENDIX c

Static Test Data
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Damage Growth Characteristics
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APPENDIX E

Damage Characteristics of Specimens

Tested for Residual Strength
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APPENDIX F

Damage Measurements of Specimens

Tested for Residual Strength
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Fl - DAMAGE MEASUREMENTS FOR 24-PLY SPECIMENS FATIGUE CYCLED AT

+35ksi TO 4000 CYCLES FOR RESIDUAL STRENGTH DETERMINATION - TASK II

N =0 N =4000

0 1

SPEC. WIDTH LENGTH AREA WIDTH LENGTH AREA

ID. Xln. Y,in. A,in. Xin. Y,in. A,in.

AB-13 0.58 0.70 0.31 1.08 0.99 0.70

AB-14 0.63 0.73 0.35 0.76 0.88 0.45

AC-29 0.65 0.72 0.37 0.74 0.94 0.46

BA-I 0.66 0.83 0.43 1.21 0.97 0.94

BA-9 0.65 0.81 0.40 1.04 0.89 0.63

CB-11 0.66 0.78 0.41 0.83 1.04 0.60

CC-23 0.66 0.75 0.39 1.00 0.83 0.49

DA-3 0.62 0.91 0.42 1.05 0.92 0.68

DC-22 0.65 0.89 0.41 1.21 0.91 0.84

EA-7 0.70 0.73 0.41 1.33 1.12 1.06

EB-14 0.69 0.79 0.43 1.10 1.00 0.81

EC-25 0.63 0.88 0.42 1.07 1.01 0.78

EC-27 0.64 0.79 0.40 0.79 0.94 0.50

FB-19 0.63 0.72 0.35 0.69 0.88 0.41

FC-24 0.65 0.79 0.40 1.15 0.89 0.74

FC-25 0.61 0.75 0.38 0.84 0.94 0.56

GA-4 0.66 0.79 0.42 1.34 0.95 0.85

GB-16 0.63 0.76 0.37 0.90 0.91 0.55

HA-2 0.66 0.79 0.41 1.15 0.94 0.85

HA-7 0.60 0.72 0.32 0.70 0.82 0.40

HC-24 0.70 0.79 0.42 1.70 1.43 1.62

IA-i 0.70 0.83 0.46 1.24 1.04 0.89
IA-5 0.69 0.76 0.42 0.79 1.01 0.54
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F2 - DAMAGE MEASUREMENTS FOR 24-PLY SPECIMENS FATIGUE CYCLED AT

+35 ksi TO 8000 CYCLES FOR RESIDUAL STRENGTH DETERMINATION - TASK III

N0 0 N1=4000

SPEC. WIDTH LENGTH AREA WIDTH LENGTH AREA

ID. Xin. Yin. Ain. Xin. Y in. A,in 2

AA-7 0.69 0.79 0.42 0.94 1.32 0.81

AA-9 0.69 0.81 0.45 a a a

AC-24 0.68 0.84 0.49 1.02 1.10 0.85

BA-6 0.68 0.80 0.48 a a a

BB-12 0.71 0.87 0.51 a a a

BC-30 0.70 0.78 0.42 0.82 0.97 0.58

CB-12 0.66 0.81 0.51 0.91 1.03 0.67

CB-16 0.62 0.78 0.37 0.94 0.94 0.55

DA-5 0.70 0.83 0.48 1.24 0.96 0.95

DB-18 0.66 0.74 0.42 0.86 1.01 0.67

DC-29 0.66 0.79 0.34 0.65 2.19 0.65

EA-5 0.64 0.78 0.45 1.99 1.51 2.35

EC-24 0.68 0.83 0.44 0.95 1.01 0.68

EC-29 0.64 0.74 0.40 0.97 1.06 0.72

FA-6 0.66 0.71 0.41 1.26 1.06 0.96

FB-11 0.88 0.99 0.65 1.66 1.12 1.26

FC-26 0.70 0.81 0.46 1.66 1.51 1.70

GA-6 0.71 0.76 0.47 2.16 1.66 2.28

GC-22 0.70 0.77 0.43 1.58 1.28 1.52

HB-15 0.61 0.72 0.42 a a a

HB-16 0.66 0.74 0.42 0.98 1.03 0.70

SB-15 0.69 0.76 0.43 1.12 1.06 0.85

IC-27 0.71 0.83 0.48 1.89 1.32 1.94

a - Specimen failed
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F3 - DAMAGE MEASUREMENTS FOR 24-PLY SPECIMENS FATIGUE CYCLED AT

+35ksi TO 12,000 CYCLES FOR RESIDUAL STRENGTH DETERMINATION - TASK III

No--0  N3"12,000

SPEC. WIDTH LENGTH AREA WIDTH LENGTH AREA

I.,Xifl. , Yin. A. in? X~in. Y~in.ID. zLx, Y~2 x~. ~-2

AA-5 0.66 0.81 0.41 1.03 1.02 0.77

AC-27 0.61 0.76 0.36 0.72 1.01 0.57

BB-19 0.65 0.75 0.37 0.96 1.08 0.77

BC-21 0.69 0.84 0.43 0.86 1.06 0.74

CA-2 0.66 0.77 0.38 0.70 1.04 0.53

CA-6 0.64 0.81 0.39 a a a

CB-14 0.65 0.77 0.39 1.07 1.10 0.81

DA-2 0.64 0.84 0.42 a a a

DA-10 0.60 0.74 0.35 0.83 0.97 0.47

DB-15 0.68 0.79 0.42 1.68 1.45 1.64

DB-19 0.66 0.76 0.38 0.78 1.04 0.57

EA-4 0.65 0.79 0.42 a a a

FA-1 0.66 0.83 0.46 1.38 1.21 1.20

FB-18 0.66 0.78 0.41 a a a

GA-5 0.67 0.82 0.44 1.13 1.04 0.92

GB-18 0.63 0.77 0.38 0.90 0.94 0.64

HA-6 0.70 0.75 0.40 1.21 1.15 0.88

HA-8 0.63 0.76 0.35 1.31 1.16 1.00

HB-19 0.64 0.74 0.38 a a a

HC-21 0.70 0.85 0.48 1.97 1.52 1.93

IA-2 0.69 0.82 0.45 1.42 1.23 1.29

IA-6 0.65 0.81 0.39 1.04 1.01 0.69

IA-8 0.64 0.77 0.38 0.88 1.01 0.63

a - Specimen failed
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F4 - DAMANGE MEASUREMENTS FOR 24-PLY SPECIMENS FATIGUE CYCLED AT

+35ksi TO 20,000 CYCLES FOR RESIDUAL STRENGTH DETERMINATION - TASK III

N 0 -0  N4-20,000

SPEC. I WIT LENGTH AREA WILNGTH AREA

ID. X,in. Ytn. W7A,n X,In. Y,in. A,tn.

AA-3 0.70 0.76 0.42 0.91 1.07 1.05

AB-17 0.70 0.83 0.53 s a a

AC-25 0.65 0.82 0.40 1.09 1.30 0.80

BA-8 0.67 0.81 0.44 a a a

BB-14 0.72 0.81 0.47 1.20 1.04 0.89

BC-22 0.72 0.81 0.47 a a a

BC-28 0.63 0.73 0.37 a a a

CA-4 0.72 0.76 0.44 a a a

CA-9 0.68 0.76 0.42 a a a

CB-17 0.66 0.83 0.41 0.66 0.97 0.49

DB-14 0.68 0.84 0.43 1.14 1.23 0.92

EB-17 0.70 0.86 0.47 a a a

EC-26 0.64 0.81 0.39 a a a

FA-2 0.70 0.81 0.46 1.57 1.10 1.16

FB-15 0.64 0.77 0.39 1.77 1.45 1.74

FC-29 0.66 0.72 0.40 1.35 1,19 1.10

GC-23 0.72 0.78 0.48 1.01 1.30 0.97

GC-25 0.71 0.81 0.42 1.63 1.36 1.30

, GC-24 0.66 0.79 0.40 1.27 1.06 0.91

HB-12 0.62 0.81 0.38 a a a

HC-29 0.65 0.73 0.39 a a a

IB-12 0.62 0.71 0.40 0.92 1.12 0.69

IB-14 0.63 0.81 0.38 a a a

a - Specimen failed
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F5 - DAMAGE MEASUREMENTS FOR 24-PLY SPECIMENS FATIGUE CYCLED AT

+35ksi TO 40,000 CYCLES FOR RESIDUAL STRENGTH DETERMINATION - TASK III

N0-0 N5-40,000

SPEC. WIDTH LENGTH AREA WIDTH LENGTH AREA

ID. X,in. Y,in. A,in. Xin. Y,in. A,in.

A-26 0.63 0.72 0.36 0.93 1.21 0.71

AA-8 0.61 0.75 0.38 a a a

B-15 0.68 0.86 0.46 1.62 2.56 2.86

B-25 0.55 0.69 0.34 1.31 1.17 1.33

B-26 0.62 0.75 0.38 a a a

C-19 0.59 0.74 0.36 1.44 1.21 1.42

C-24 0.60 0.77 0.36 1.08 1.26 0.82

C-27 0.65 0.79 0.41 1.50 1.22 1.35

CA-3 0.66 0.85 0.43 a a a

D-13 0.64 0.78 0.40 a a a

D-26 0.59 0.80 0.55 a a a

E-9 0.58 0.68 0.33 1.30 1.46 1.23

E-15 0.65 0.83 0.61 a a a

E-30 0.59 0.73 0.34 2.17 1.45 2.16

F-7 0.61 0.70 0.36 a a a

F-27 0.61 0.72 0.36 0.93 1.21 0.86

G-I 0.63 0.80 0.40 a a a

G-3 0.61 0.75 0.39 a a a

G-9 0.59 0.68 0.36 1.32 1.35 1.53

G-15 0.65 0.83 0.41 a a a

H-3 0.61 0.75 0.39 a a a

H-30 0.62 0.72 0.55 1.97 1.50 2.50

1-16 0.63 0.76 0.38 1.14 1.28 0.93

a - Specimen failed
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FU
F6 - DAMAGE MEASUREMENTS FOR 32-PLY SPECIMENS FATIGUE CYCLED AT

+22ksi TO 1000 CYCLES FOR RESIDUAL STRENGTH DETERMINATION - TASK II

N = 0 N = 1000
SPEC 0 1

ID. WIDTH LENGTH AREA WIDTH LENGTH AREA

X,in. Y, in A,An 2  X,in. Y,In. A,in2

JB-13 0.83 0.80 0.54 0.88 0.80 0.53

JB-16 0.71 0.70 0.42 0.74 0.72 0.44

JG-22 0.92 0.86 0.60 1.01 0.88 0.70

KA-9 0.81 0.84 0.58 1.06 0.88 0.69

KB-18 0.87 0.77 0.55 0.81 0.81 0.53

KE-27 0.75 0.81 0.51 0.81 0.81 0.54

LA-3 0.83 0.79 0.56 1.17 0.81 0.75

LA-9 0.87 0.86 0.59 0.97 0.87 0.67

MA-8 0.82 0.83 0.56 1.16 0.81 0.73

MC-23 0.80 0.88 0.60 1.08 0.86 0.61

MC-28 0.73 0.76 0.47 0.99 0.81 0.60

NA-4 0.86 0.83 0.57 1.23 0.87 0.84

NC-28 0.84 0.83 0.60 1.21 0.83 0.75

NC-30 0.77 0.77 0.54 1.12 0.80 0.70

PA-3 0.80 0.70 0.47 0.79 0.76 0.47

PA-9 0.79 0.78 0.54 1.11 0.79 0.67

QA-4 0.83 0.86 0.60 1.13 0.90 0.76

QA-6 0.83 0.90 0.61 1.13 0.90 0.78

QB-17 0.83 0.81 0.56 0.76 0.80 0.53

A RA-2 0.86 0.88 0.65 1.44 0.89 0.89

RC-29 0.86 0.90 0.69 1.03 0.91 0.74

SA-7 0.80 0.80 0.55 0.97 0.83 0.65

SB-19 0.88 0.81 0.57 0.97 0.86 0.66



F7 - DAMAGE MEASUREMENTS FOR 32-PLY SPECIMENS FATIGUE CYCLED AT

+22ksi TO 5,000 CYCLES FOR RESIDUAL STRENGTH DETERMINATION - TASK II

N = 0 N = 5000
SPEC0

ID WIDTH LENGTH AREA2 WIDTH LENGTH AREA

X, in y,in A,in Y, , in A in

JA-4 0.97 0.89 0.74 1.19 0.87 0.76

JA-5 0.88 0.81 0.58 1.74 0.86 0.94

KB-16 0.92 0.92 0.66 1.52 0.92 0.92

KC-24 0.82 0.88 0.57 1.01 0.88 0.67

KC-28 0.81 0.86 0.58 0.90 0.81 0.54

LA-2 0.86 0.90 0.61 1.38 0.86 0.78

LB-16 0.84 0.83 0.58 1.37 0.85 0.87

MA-6 0.84 0.81 0.56 1.99 0.88 1.11

MB-16 0.89 0.86 0.45 1.47 0.85 0.78

MC-22 0.74 0.74 0.49 1.79 0.84 0.98

NA-2 0.81 0.83 0.56 1.40 0.85 0.81

NC-22 0.79 0.88 0.57 1.77 0.83 1.02

NC-26 0.77 0.83 0.51 1.25 0.82 0.70

PB-15 0.72 0.74 0.44 0.82 0.74 0.69

PC-25 0.85 0.83 0.57 1.61 0.85 0.86

QA-1 0.87 0.90 0.58 1.34 0.88 0.52

QA-9 0.76 0.81 0.52 1.88 0.77 0.85

QC-28 0.80 0.89 0.57 1.41 0.88 0.84

RB-19 0.83 0.88 0.59 1.11 0.90 0.69

RB-20 0.47 0.80 0.49 1.12 0.77 0.54

RC-27 0.87 0.89 0.61 1.87 0.87 0.99

SB-13 0.91 1.00 0.72 1.20 0.94 0.81

SC-22 0.83 0.92 0.58 1.72 0.92 0.98
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F8 - DAMAGE MEASUREMENTS FOR 32-PLY SPECIMENS FATIGUE CYCLED AT

+22ksi TO 10,000 CYCLES FOR RESIDUAL STRENGTH DETERMINATION 
- TASK II

SPEC No = 0 N 3 = 10,000

ID WIDTH LENGTH AREA WIDTH LENGTH AREA
X, in yin Ain X, in y,in A,in

JC-27 0.87 0.92 0.70 1.49 0.89 0.84

JC-28 0.87 0.87 0.58 0 0.98 1.01

KA-2 0.83 0.87 0.57 2.04 0.89 2.30

KA-7 0.84 0.87 0.59 1.37 0.84 0.85

KC-22 0.81 0.80 0.52 1.39 0.84 0.81

LA-7 0.83 0.83 0.55 1.49 0.81 0.80

LC-23 0.83 0.86 0.58 1.57 0.88 0.96

LC-27 0.79 0.85 0.51 1.50 0.86 0.98

MC-25 0.78 0.77 0.51 1.11 0.93 0.71

MC-29 0.81 0.77 0.53 1.03 0.88 0.66

NB-13 0.81 0.79 0.50 1.14 0.83 0.67

NB-16 0.81 0.89 0.57 2.67 0.89 1.42

PA-1 0.77 0.67 0.42 1.41 0.83 0.80

PA-4 0.83 0.74 0.46 1.46 0.85 0.79

PC-21 0.72 0.69 0.42 0.72 0.68 0.39

PC-27 0.76 0.74 0.49 0.88 0.76 0.46

QB-12 0.79 0.83 0.52 1.79 0.88 1.05

QC-23 0.83 0.89 0.59 1.77 0.87 0.81

RB-17 0.79 0.80 0.50 1.64 0.83 0.92

RC-23 0.95 1.00 0.73 1.86 0.94 1.06

SA-3 0.81 0.86 0.54 1.61 0.97 0.95

SA-5 0.77 0.76 0.47 1.11 0.81 0.63

SB-II 0.90 0.89 0.62 1.88 0.87 1.07
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F9 - DAMAGE MEASUREMENTS FOR 32-PLY SPECIMENS FATIGUE CYCLED AT

+22ksi TO 20,000 CYCLES FOR RESIDUAL STRENGTH DETERMINATION - TASK II

SPEC NO = 0 N4 
= 20,000

ID WIDTH LENGTH AREA WIDTH LENGTH AREA

X,in Y,in A,in2  X,in Y, in A,in

JB-I 0.81 0.83 0.54 1.30 0.98 0.92

JB-14 0.76 0.78 0.48 1.50 0.84 0.88

JB-15 0.80 0.83 0.52 1.00 0.89 0.64

KB-12 0.72 0.80 0.51 1.38 0.90 0.95

LA-4 0.81 0.81 0.53 2.00 0.96 1.21

LA-5 0.80 0.81 0.53 2.18 0.94 1.10

LC-31 0.70 0.77 0.42 1.41 0.86 0.84

MB-II 0.79 0.83 0.50 2.62 0.88 1.37

MB-13 0.83 0.84 0.53 2.02 0.94 1.09

MB-18 0.84 0.84 0.56 1.57 0.88 , 0.93

NA-6 0.87 0.92 0.62 1.41 0.96 0.97

NB-17 0.93 0.94 0.66 1.30 0.93 0.90

NB-19 0.79 0.85 0.54 1.12 1.01 0.74

PB-17 0.74 0.72 0.42 2.06 0.91 0.96

QB-13 0.86 0.92 0.59 2.01 0.95 1.20

QC-22 0.93 0.90 0.64 1.86 1.00 1.28

QC-30 0.80 0.73 0.49 1.68 0.82 0.84

RA-7 0.85 0.90 0.60 1.59 0.94 1.00

RC-22 0.96 0.97 0.74 1.42 0.98 1.02

RC-24 0.83 0.88 0.58 2.44 0.93 1.37

SA-9 0.90 0.85 0.59 a a a

SC-23 0.82 0.86 0.56 2.38 0.89 1.44

SC-27 0.81 0.86 0.60 2.19 1.05 1.28
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F10 - DAMAGE MEASUREMENTS FOR 32-PLY SPECIMENS FATIGUE CYCLED AT

+22ksi TO 28,000 CYCLES FOR RESIDUAL STRENGTH DETERMINATION - TASK II

SPEC N = 0 N = 28,000

ID WIDTH LENGTH AREA WIDTH LENGTH AREA

X,in Y, in A,in2  X,in Y,in A,in 2

JB-18 0.92 0.85 0.64 2.89 1.10 1.94

JC-23 0.86 0.88 0.56 2.48 1.05 1.52

JC-30 0.87 0.87 0.62 1.64 0.94 1.05

KA-5 0.84 0.86 0.57 2.39 0.94 1.33

KB-14 0.82 0.83 0.54 2.47 0.93 1.40

KB-17 0.84 0.82 0.54 2.57 1.04 1.63

LB-19 0.84 0.81 0.58 1.74 0.95 2.18

LC-26 0.85 0.80 0.53 2.54 1.01 1.49

MA-4 0.85 0.81 0.56 2.44 2.57 2.94

MB-15 0.69 0.67 036 0.88 0.75 0.42

NB-14 0.79 0.75 0.47 1.52 0.84 0.78

NB-18 0.83 0.86 0.56 2.52 1.00 1.46

PA-7 0.84 0.89 0.61 2.55 0.95 1.54

PB-12 0.85 0.83 0.56 2.59 1.03 1.57

PB-13 0.86 0.89 0.68 2.63 1.01 1.54

QC-24 0.81 0.80 0.51 1.16 0.88 0.45

QC-31 0.76 0.83 0.49 2.04 0.83 0.99

RA-5 0.91 0.91 0.62 2.6] 0.94 1.49

RC-25 0.90 0.97 0.68 2.73 1.00 1.77

RC-31 0.76 0.81 0.48 2.54 1.19 1.60

SB-17 0.87 0.87 0.57 2.17 0.94 1.23

SB-18 0.81 0.90 0.58 2.21 0.98 1.34
SC-31 0.81 0.87 0.56 1.72 0.96 1.43
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TABLE Fll

DAMAGE MEASUREMENTS FOR 24-PLY SPECIMENS FATIGUE CYCLED
UNDER CONDITION A, 4-BAR SUPPORT FOR RESIDUAL STRENGTH DETERMINATION

TASK III

SPEC. I WIDTH LENGTH AREA 2 WIDTH LENGTH AREA 2
ID. X, in. Y, in. A, in.2  X, in. Y. in. A, in.

N - 0 N1 - 4,000

AB-14 0.70 0.88 0.49 0.93 1.26 0.88

AC-26 0.66 0.75 0.43 1.06 1.02 0.84

BA-7 0.61 0.68 0.35 0.57 0.82 0.39

BC-27 0.68 0.89 0.50 1.22 1.05 0.89

CA-2 0.67 0.81 0.47 1.90 1.23 1.52

CA-9 0.68 0.84 0.46 0.77 1.07 0.65

N =0 N2 = 8000

AB-16 0.59 0.70 0.34 0.86 0.90 0.54

AB-19 0.63 0.79 0.43 1.18 1.10 1.01

BA-4 0.62 0.73 0.36 1.10 1.15 1.00

CA-7 0.67 0.83 0.48 0.99 1.05 0.78

CA-10 0.70 0.85 5.00 1.17 1.08 0.96
1.26 1.09

CC-23 0.71 0.88 0.50 - - -

N = 0 N3 = 12000
.0 3 0

AA-7 0.68 0.77 0.46 1.24 1.26 1.28

AC-31 0.66 0.80 0.44 1.25 1.50 1.23

BB-11 0.70 0.84 0.49 2.07 1.38 2.22

BB-13 0.59 0.68 0.31 0.59 0.92 0.40

CC-21 0.68 0.83 0.49 1.83 1.48 1.91

CC-26 0.68 0.81 0.43 1.56 1.17 1.32
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TABLE F 12

]DAMAGE MEASUREMENTS FOR 24-PLY SPECIMENS FATIGUE CYCLED
UNDER CONDITION B, R - -0.3 FOR RESIDUAL STRENGTH DETERMINATION -TASK III

SPEC. I WIDTH LENGTH I AREA I WIDTH LEGHI AA
ID. X, in. Y, in. A, in. X, in. Y. in. A, i.

N 0  0 N 1 - 4,000

AB-12 0.70 0.84 0.50 0.70 1.30 0.68

AC-25 0.68 0.83 0.46 0.75 1.24 0.71

BC-22 0.69 0.86 0.46 0.70 1.19 0.63

BC-25 0.64 0.73 0.40 0.64 1.25 0.67

CB-16 0.57 0.67 0.31 0.57 0.99 0.48

CC-28 0.70 0.85 0.48 0.69 1.26 0.65

N 0= 0 N 2 = 40,000

AA-10 0.69 0.86 0.45 0.70 1.81 0.88

AB-20 0.59 0.71 0.36 0.64 1.59 0.73

BB-15 0.67 0.86 0.46 0.72 1.65 0.83

. BB-19 0.68 0.80 0.45 0.72 1.66 0.86

CA-3 0.68 0.89 0.51 0.72 1.88 1.02

CB-13 0.68 0.87 0.50 0.72 1.73 0.91

No = 0 N 3 = 250K

AB-15 0.70 0.86 0.48 0.70 2.13 1.08

AC-24 0.67 0.88 0.51 0.72 2.14 1.10

BA-10 0.68 0.85 0.50 0.70 2.21 1.07
0.68 2.19 1.07

BC-31 0.68 0.89 0.49 0.72 2.00 0.93

CB-li 0.69 0.81 0.47 0.68 1.84 0.94

CB-15 0.71 0.86 0.50 0.68 1.99 0.98

F13



TABLE F13

DAMAGE MEASUREMENTS FOR 24-PLY SPECIMENS FATIGUE CYCLED
UNDER CONDITION C, 180 0 F FOR RESIDUAL STRENGTH DETERMINATION - TASK III

SPEC. WIDTH LENGTH YAREA 2 WIDTH LENGTH AREA2 ID. X, in. Y, in. A, in. X, in Y. in. A, in

N 0 0 N - 50

AA-3 0.68 0.87 0.47 0.88 0.91 0.58

AC-23 0.70 0.81 0.48 1.05 0.81 0.63

BB-20 0.66 0.84 0.45 0.68 0.88 0.47

BC-28 0.69 0.89 0.47 0.75 0.90 0.50

CB-14 0.69 0.80 0.48 0.72 0.91 0.54

CB-19 0.57 0.69 0.31 0.62 0.71 0.36

N 0 N -300
0 2

AA-5 0.63 0.84 0.42 0.95 0.86 0.64

AB-13 0.68 0.90 0.49 0.70 0.93 0.56

BB-14 0.69 0.90 0.48 0.90 0.90 0.94

BB-17 0.66 0.79 0.39 0.68 0.88 0.48

CA-5 0.70 0.81 0.46 1.27 0.93 0.92

CC-30 0.67 0.86 0.52 1.08 0.95 0.78

No =0 N3 - 1000

AA-6 0.63 0.75 0.39 1.49 1.04 1.14

A AC-30 0.56 0.68 0.31 0.81 0.79 0.50
BA-9 0.67 0.88 0.47 1.01 0.83 0.74

BB-16 0.62 0.79 0.32 0.66 0.79 0.41

CB-18 0.60 0.77 0.36 0.80 0.87 0.48

CB-20 0.61 0.77 0.41 0.87 0.77 0.50

F1*4 Ads&



TABLE F14

DAMAGE MEASUREMENTS FOR 32-PLY SPECIMENS FATIGUE CYCLED
UNDER CONDITION A, 4-BAR SUPPORT FOR RESIDUAL STRENGTH DETERMINATION

TASK III

SPEC. WIDTH LENGTH AREA WIDTH LENGTH AREA
ID. X, in. Y, in. A, in. X, in. Y. in. A, in. 2

No - 0 N1 - 1,000

DB-13 0.77 0.79 0.46 0.97 0.86 0.58

DC-26 0.83 0.87 0.59 1.22 0.86 0.69

EA-1 0.75 0.83 0.48 0.91 0.85 0.58

EB-22 0.80 0.77 0.47 1.17 0.84 0.66

FC-23 0.75 0.75 0.44 1.08 0.74 0.58

FC-28 0.82 0.74 0.46 0.92 0.79 0.60

N 0 =0 N2 f 10,000

DB-18 0.68 0.58 0.31 0.99 0.53 0.40

DC-23 0.77 0.81 0.49 2.87 1.08 1.36

EA-7 0.80 0.75 0.52 2.28 0.87 1.10

EB-17 0.82 0.82 0.52 1.52 0.94 0.89

FA-10 0.77 0.78 0.51 1.68 0.90 0.98

FB-14 0.83 0.88 0.58 1.36 0.92 0.98

N =0 N3 = 20,000

DA-3 0.81 0.82 0.51 1.02 0.91 0.67

DB-11 0.75 0.74 0.44 1.59 0.96 1.08

EB-20 0.79 0.73 0.48 1.39 0.97 1.00

EC-23 0.73 0.75 0.41 1.03 0.83 0.63

FA-1 0.78 0.74 0.47 1.69 0.97 1.10

FA-2 0.77 0.72 0.47 2.59 0.99 1.48

F15



TABLE F15

DAMAGE MEASUREMENTS FOR 32-PLY SPECIMENS FATIGUE CYCLED UNDER
CONDITION B, R = -0.3 FOR RESIDUAL STRENGTH DETERMINATION - TASK III

SPEC. WIDTH j LENGTH AREA 2 WIDTH LENGTH AREA 2
ID. X, in. Y, in. A, in. X, in. Y. in. A, in.

N = 0 N 1 - 20,000

EA-6 0.84 0.90 0.60 0.92 0.93 0.63

EC-24 0.68 0.59 0.34 0.70 0.57 0.33

DA-5 0.82 0.95 0.66 0.85 1.03 0.73

DB-19 0.73 0.78 0.44 0.76 0.83 0.47

FA-9 0.84 0.85 0.54 0.83 0.81 0.58

FC-27 0.72 0.72 0.43 0.85 0.78 0.50

N0 0 Nf2=250K

DA-8 0.79 0.77 0.47 1.06 1.10 0.94

DC-30 0.83 0.85 0.58 0.90 1.23 0.84

EA-9 0.79 0.78 0.49 0.88 1.06 0.66

EB-21 0.72 0.74 0.44 0.80 0.91 0.52

FA-7 0.77 0.83 0.50 0.85 0.99 0.64

FC-29 0.80 0.84 0.54 0.95 1.08 0.80

N =0 N =I06
0 3

- DB-14 0.81 0.79 0.52 0.97 1.14 0.90

DB-15 0.77 0.79 0.48 1.10 1.94 1.14

EB-16 o.81 0.88 0.56 0.95 1.22 0.92

EC-31 0.75 0.71 0.44 1.02 1.16 0.98

FB-13 0.77 0.78 0.49 0.84 1.32 1.00

FB-20 0.79 0.84 0.56 0.99 2.53 1.50

F16



TABLE F16

DAMAGE MEASUREMENTS FOR 32-PLY SPECIMENS FATIGUE CYCLED UNDER
CONDITION C, 180°F FOR RESIDUAL STRENGTH DETERMINATION - TASK III

SPEC. WIDTH LENGTH AREA 2 WIDTH LENGTH AREA-2ID. X, in. Y, in. At in. 2  X, in. Y. in. A , in. Z

NO - 0 N - 1,000

DB-12 0.83 0.83 0.54 1.53 0.90 0.93

DE-22 0.77 0.81 0.44 0.91 0.91 0.61

EB-12 0.80 0.78 0.50 1.05 0.88 0.65

EB-19 9.72 0.77 0.44 0.99 0.83 0.65

FB-15 0.73 0.74 0.44 0.94 0.82 0.58

FC-21 0.71 0.77 0.40 0.85 0.72 0.47

N 0 N =4000o2

DA-1 0.74 0.70 0.44 1.23 0.87 0.86

DB-20 0.77 0.77 0.44 1.40 1.01 0.97

EC-28 0.74 0.85 0.50 1.08 0.86 0.73

EC-29 0.80 0.83 0.54 1.42 0.98 0.92

FA-5 0.83 0.84 0.52 0.95 0.95 0.68

FA-6 0.72 0.77 0.46 0.98 0.76 0.51

N°-0 N3-8000

DA-10 0.83 0.84 0.57 3.38 1.06 2.29

DB-16 0.83 0.87 0.56 1.26 1.12 1.12

EA-5 0.88 0.84 0.58 1.61 1.04 1.07

EC-27 0.86 0.86 0.59 3.45 1.12 2.47

FB-11 0.83 0.88 0.58 1.12 1.06 0.84

F17



APPENDIX G

Damage as Determined by

Metallographic Sectioning
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c SC Al

CUMULATIVE B-SCAN

24-PLY SPEC: CB-11 N1 = 4000 CYCLES

G2



------------.- 1 - -

cu-i-ilox

Cll-1-2 25X

9 LOCATION: 1.12 IN. DAM~AGE LENGTH: 0,628

B-SCAN AT 1.15 IN,

G3



Cll-2-1 lox

.. ANN-- w-z

C11-2-2 25X

LOCATION: 1.22 IN. DAMAGE LENGTH: 0.704

G14



C11-3- A -l

LOATON 1,2I 1 DAAELNGH ,
G5r



C11-3-1B lox

LOCAT 1ICM: 1.32 IN. PA 'YY[ W1711T: ,7 7
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C11-4-1A l.ox

C11-4-2A 25X

LOEATION: 1.4I2 IN. DAMAGE LENGTH: 0.85

G7



C11-4-13 l ox

C11-4-2B 25X

LOCATION: 1.42 IN. DAMAGE LENGTH: 0.865
G8



LOCATION: 1.52 IN. DAMAGE LENGTH: 0.903

Cll-5-lA lox

Cl1-5-2A 25X- B-SCAN AT CENTER

G9



C11-5-1B lox

CI1-5-2B 25X

LOCATION: 1.52 IN. DAMAGE LENGTH: 0.903

G 10



Cll-6-1A lox

C11-6-2A 25X

LOCATION: 1.62 iN. DAMAGE LENGTH: 0,867

G11



Cll-6-lB lox

C1I-6-2B 25X

LOCATI'ON:.- 1'.62 IN, DAMAGE LENTH: 0*.8E7

012



--- - ----------- -------- ---- -- -- -- -- - .

C11-.7-1lox

C-1-7-2 25X

- B-SCAN AT 1.78 IN.

LOCATION: 1.72 IN. DAM~AGE LENGTH: 0.653
G13



C1l-8-1 lox

CII-8-22X

LOCATION: 1.82 IN, DAMAGE LENGTH: 0,290

G 14



C11-9-1 lox

Cll-9-2 25X

LOCATION: 1.92 IN, DAMAGE LENGTH: No DAMAGE

G15



c11-10.-1 lox

Ci1-10-2 25X

LOCATION: 2.02 IN. DAMAGE LENGTH:. No DAMAGE

G16



2

3

C-SCAN

CU1LLATIVE F-SCAN

SPEC: D-1r; 7 = 1, , " yrvt

G17



D19-1-1 lx

D191-2 25x
LOCATION: 1.15 IN, DAMAGE LENGTH: 0,659 IN,

B-SCAN N

G18



D19-2-1 lox

*D19-2-2 25

LOCATION: 1.25 IN. DAMAGE LENGTH 0.858 IN.

G19



.~ ~ ~ ~ . . .. ----

119-3-1A lox

D19-3-2A 25x

LOCATION:. 1.35 IN, DAMAGE LENGTH 0.908 IN.

G20



119-3-1B lox

D1932B 25x

LOCATION: 1.35 IN. DAMAGE LENGTH 0.908 IN.

G2 1



D19-4-IA lox

D19-4-2A 2 5x

LOCATION: 1.415 IN, DAMAGE LENGTH 1,007 IN.
G22



D19-4-1B lox

D19-4-2B 25x

LOCATION: 1.145 IN., DAMAGE LENGTH 1.007 'IN.

G23



* D19-5-2A25
LOCATION: 1,55 IN, DAMAGE LENGTH: 0.988 IN

B-SCAN
a15IN.

G24



D19-5-lB lox

*D19-5-2B 25x

LOCATION: 1.55 IN, DAMAGE LENGTH 0.985IN

G25



D19-6-1A lox

D19-6-2A 25X

LOCATION: 1.48 IN. DAMAGE LENGTH: 0.918

G26



D19-6-lB lox

D-19-6-213 25X

LOCATION: 1.48 IN, DAMAGE LENGTH: 0.918

G27



D1.9-7-1. lox

D19-7-2 25X

B-SCAN AT 1.78 IN.

LOCATION: 1.75 IN. DAMAGE LENGTH: 0.710

G28



D19-8-1 lox

D-19-8-2 -25X

LOCATION: 1.68 IN. DAMAGE LENGTH: 0.933

G29



D19-9-1 lox

D-19-9-2 25X

LOCATION: 1.78 IN. DAMAGE LENGTH: 0,888

G30



D19-10-1 lox

D-19-10-2

LOCATION: 1.88 IN. DAMAGE LENGTH: 0O[C30

G3 1



1

2

3

C-SCAN

CUM!ULATIVE B-SCAN

24-PLY SPEC: IB-12 N4 1 20,000 CYCLES

G32



112-1-1lox

112-1-2 25X

LOCATION: 1.08 IN, DAMAGE LENGTH: 0,439

G33



112-2-1 lox

112-2-2 25SX

LOCATION: 1,221N. DAMAGE LENGTH: 0.704

G3~4



12-3-1A OX

I12-3-2A 25X

B-SCAN AT 1.23 IN.

LOCATION: 1.28 IN, DAMAGE LENCTH: 0,868

G35



I12-3-IB l ox

1 12-3-2B 25X

LOCATIONl: 1,28 IN. DAMAC3E LENfTH: OI8f9

G36



112-4I-1A lox

112-4-2A 25y,

LOCATION: 1.38 IN, DAMAGE LENGTH: 0,85f~

G37



I12-4-1B lox

I12-4-2P 25X

LCCATlIO: 1-38 IN, DAP'ACE LENCTH: 0.856

G 38



I 12-5-IA lox

I12-5-2A 2 5X

LOCATION: 1.48 IN. DAMAGE LENGTH: 0.997

G39



112-5-1B lox

112-5-2B 25X

LOCATION: 1.48 IN. DAMAGE LENGTH: 0,997

G40



112-6-1A lox

1 12-6-2A 25X

LOCATION: 1,58 IN, DAMAGE LENGTH: 0,8E9

- B-SCAN AT 1.59 19,

G4 1



I12-6-IB lox

112-6-2B 25X

LOCATION: 1.58 IN, DAMAGE LENGTH: 0.869

G42



112-7-1 lox

112-7-2 25X

LOCATION: 1.68 IN. WAAGE LEN(TH: 0.0973

G4 3



112-8-1 lox

112-8-2 25X

LOCATION: 1.78 IN, DAMAGE LENGTH: 0 .907

G4'4



112-9-1 lox

1 12-2 25X

LOCATION: 1,88 IN. DAMAGE LENGTH: 0.702

B-SCAN AT 1.88 IN.

G45



112-10-2 25X

LOCATION: 1.98 IN, DAPNA~iE LENGTH: 0,204

G4I6



112-11-1 lox

*112-11-2 25X'

LOCATION: 2.08 IN. DAMAGE'LENGTH: No DAMAGE

G47



2

3

'4

C-SCAN

CUMUILATIVE B-SCAN

24-PLY SPEC: EC-30 Ns ='40,000

G48



E30-1-1 lox

TE30-1-2 25X

LOCATION: 0.45 IN, DAM1AGE LENGTH: No CRACKS

G49



E30-2-1 lox

E30-2-2 25X

LOCATION: 0.55 IN. DAMAGE LENGTH:* 0*,326

G50



E30-3-1 lox

ir ~~~mUmq rob.--- -

- ------

E30-3-2 2 5X

LOCATION 0.65 IN. DAMAGE LENiGTH: O.CIC.

G51



E30-4-1 lox

E30-4-2 25X

B-SCAN AT 1.79 IN.

LOCATION: 0.75 IN, DAMAGE LENGTH: 0,76F

G52



E30-5-1- lox

E30-5-2 25X

LOCATION: 0.85 IN. DAMAGE LENGTH: 0.822

G5 3



E30-6-1 lox

E30-6-2 25X

LOCATION: 0.95 IN, DAM1AGE LENGTH: 0,957

G5'4



E30-7-1 lox

E30-7-2 25X

LOCATION: 1.05 IN, DAMAGE LENGTH: 1.192

G55



E30l-8-1 lox

E30-9-2 25X

LOCATION: 1.15 IN. DAMIAGE LENGTH: 1,138

G56



E30-9-1 lox

E30-9-2 25X

LO'CATIONI: 1.25 IN, DAVAGE LENCT11: 1.259

G57



E30-10-lA lox

E3O-1O-lPA 25X

LOCATION: 1.35 IN. DAMAGE LENGTH: 1,200

G58



E30-10-lB lox

F30-0-?B25X

LOCATION: 1q35 IN. DAMAGE LHUMT: 1,209

G59



E30-11-1A lox

E30-11 -2A 2 5X

LOCATION: 1.45 IN, DAMAGE LENU~H: 1,277

G60



E30-11-IB lox

E30-J1-2B 25X.

LOCATION: 1.45 IN. DAMAGE LENG'TH: 1,277

G6 1



E3C-12-1A lox

E30-12-1 25X

P-SCAN AT CENTEP

LOCATION: 1.55 IN, DAMAGE LENG-TH: 1.317

G62



E 30-12-2B Bo

E30-12-2B 25X

LOCATION: 1,55 IN. DAMAGE LENGTH: 1,317

G6 3



. . . .. .. .--

E30-13-IA lox

E30-13-1B 25X

LOCATION: 1.E65 IN. DAMAGE LENGTH: 1.285

G64



E30-13-2B 25X

LOCATION: 1.65 IN, DAWAGE LENGTH: 1,285

G65



E30-1'4-1 lox

E30-14-2 25X

LOCATION: 1.75 IN, DAMAGE LENGTH: ]-.2E

G66



E30-15-1

E30-15-2 2 5Y

LOCATION: 1.85 IN. DAMAGE LENGTH: 1,297

G67 --



E30-16-1 lox

E30-16-2 25X

LOCATION: 1.95 IN, DAMAGE LENGTH: 1,205

G68



E30-17-1 lox

E30-17-2 25X- B-SCAN AT 2.08 IN.

LOCATION: 2.05 IN. DAMAGE LENGTH: 1,130

G69



E30-18-1 lox

2 5X

LOCATION: 2.15 IN. DAMAGE LENGTH: 1,112

G7 0



E30-19-1lox

E30-19-225

LOCATION: 2,25 IN. DAJ1AGE LENGTH: 0,907

G7 1



E30-20-1 lox

E30-20-2 25X

LOCATION: 2.35 IN. DAMAGE LENGTH: 0,571

G72



E30-21-1 ilox

E30-21-2 2 5X

LOCATION: 2.45 IN, DAMAGE LENGTH: 0.453

G7 3



E30-22-1 lox

E3e-22-1 25X

LOCATION: 2.55 IN. DAMAGE LENGTH: No DJAMAGE

G14'



2

3

C-SCAN

CUMULATIVE B-SCAN

32-PLY SPEC: flC-23 N1 =1,OOP CYCLES



M23-1-2 25x

LOCATION: 1.03 IN, DAMAGE LENGTH: 0.309

- B-SCAN
AT 1.03 IN,

G76j



M23-2-1 lox

M23-2-225

LOCATION: 1.13 DAMAGE LENGTH 0.479 IN.

G77



M23-3-1 lox

M23-3-2 25Sx

LOCATION: 1,23 IN, DAMAGE LENGTH: 0.619

(/8



M23-4-A~~A1

M23-'4-2A 25Y

LOCATION: 1.33 IN, DAMAGE LENGTH: 0,771
G7 9



M2 3-L-lB lox

M23-4-2B 25x

LOCATION: 1.33 IN. DAMAGE LENGTH: 0,771
r, O



M23-5-IA lox

M23-5-2A 25x
LOCATION: 1,'4 G ,8 N

B-SCAN

@ 1.5 IN.

c' 8



M23-5-1B lox

M23-5-2B 25x

LOCATI ON: 1.43 IN, DAMAGE LENGTH: 0.781

[ A 

G82



12 3-G-lA loxA

-r- \

LOCATION: 1.53 IN. DAM~AGE LENGTH: 0.806"



-~ --a S

M-23-6-IB lox

25X

LOCATION: 1.53 IN, DAMAGE LENGTH: 0.80E

G84



M2 3-7-lA lox

r'23-7-2A 2[;y

LOCATION: 1.63 IN. DAf'ACE LErJGTI: 0. 75"
F', 5



* 25Y

LPC/TION: I.C HIN. DPJ2P.CE LF WTP: C75P



P23-8-1 lox

'2 3-8-2 25 X

LOCA\TION: 1. 73 IN. DA11AGE LENCTH: P0F7 0

CR7



F.23-9-1 lox

-2 5X

LC!TIerN: I. I N P[YCE LrHC!,TI: ~58F



M23-10-1y~rr - lox

MC23-3 0-2 2 5 X

B SCAN PT I,

T N P'FP'" E LI v F' TI: n 1I15tI



M23-1-1 
lo

f'2 3-11-1 loX

LOCATION: 2.03 IN. DMflAGE LENG-TH: r.18P

G90



tK2 3-12-11C)

M'23-12-2 2

LOCATION: 2.13 IN. DAM'AGE LENCTH: NO PAtPACE

G91



2

3

5

C-SCAN

CUMULATIVE B-SCAN

32-PLY SPEC: IIC-22 N2 = 5,000 CYCLES

G9 2



M22 -1-1 lox

M22 -1-2 25X

LOCATION: 0.69 IN, DAMAGE LEN(CTH: No CRACKS

G9 .s



y~ 7

M22 -2-1 lox

-7 -

M122-2-225

.LOCATIONJ: 0.79 IN. DAMAGE LENGTH: 0,318

G94



f122-3-1 OX

M,22-3-2 25X

LOCATION: 0,89 IN. PAr"ACE LENGTH: 0,419
G9 5



M~22-'4-1 lox

P.22-4-2 25X

LOCATION: 0.99 IN, DAV~AGE LENGTH: 0.620
G96



M122-5-1 lox

M,22 -5-2

LOCATION: 1.09 IN. DAM1AGE LENTUH: MY83

G9 7



M225X - B-SCN AT 116lIN

LOCAION: 1.19IN. AI'~ACE E~fT: Ofl

G-am8



t'22 -7-1 nx

V22-7-225

LOCATION: 1. 29 IN, DAP'PCE LENCT11: C F

I G99



?M22-8-IA lox

r22-8-l A 25X

LOCATION: 1.39 IN. DAMAGE LENGTH: 0,75F
G 100



r'22-8-2B lox

M22-8-2F 25'

LOCATION: 1.39 IN. D A1 A 0E LENCTH: 0.75C,



F22-or-2 AT1

n~~~~ , VA Arr
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M22 -9 -2F 25X

LOCATION: 1.49 IN. DWIMT LENGTH: 0.780
G103



M22-10-1A l ox

?122 -10 -2A 2 5X

LOCATION: 1.59 IN. DAMAGE LENGTH: 0.793
G104



p122 -10-lB J oy

1122-1 0-2B 25X

LOCATION: 1.59 IN, DAMAGE LENGTH: 0.793
G105



M22-11-JA l ox

P22-11I-2A 25X

LOCATION: 1.69 IN, DAM~AGE LENGTH: 0,72F
0106



M22-11-1Bjo

M22-13 -2P 25X

LOCATION: 1,69 IN. DAMACE LENGTH: ,7H6
G107



M22 -12-1 1CnX

M~22-12-2 5

LOCATIONl: 1.79 IN. DAMAGE LENCTH: 0.754
G 108



M22 -13-1 lox

M'22 -13-2 25X

LOCATION: 1.89 IN, DAMAGE LENGTH: OIE8P-
G109



M~22 -Pi2 2-2

B-SCAN AT 1.95 IN.

LOCATION; 1.99 IN. DAMAGE LENGTH: 0,61

G110



----------- M mrirI~
M2215- IU y L

.A6

LOCAION -15-1 1 N.DAELECH0

Gill



M22 -16-A lox

G0112



122-16-lB 2 fX

LOCATION: 2.19 IN, DAMAGE LENGTH: 0.30

G113



M~22-17-1 lox

M-22-17-2 25X

LOCATION: 2.29 IN. DAMIAGE LENGTH: 0.325

G114



M2 2 -18 -1 JOY

LOCATION: 2,3C IN, DAIAGE LEINOT: 5

C115



M22-19- 1, lox

M22-19-2 25SX

LOCATION: 2.41 IN. DAMAGE LENUH: NO DAM'AGE

c.1 6



2

3

C-SCAN

CUMUTLA\TIVE 13-SCAN

32-PLY SPEC: RC-23 N 10,COO CYCLES
('p117



R2 3-1-1 lox

P2'-1-225X

LOCAT I ON: 0.61 IN. DAC~E LEflfT1: 0,277

GliB



16,-. - -I

R2 3-2-1 lox

R23-2-2 25X

LOCATION: 0.71 IN. DAMIAGE LENGTH: 0,379

G119



I'7F i, il

R23-3-1 lox

: mg

P23-3-2 25X

LOCATION: 0.81 DAMAGE LENJGTH: 0,439

G120



R2 3-4-i I O'X

P23-4-2 25X

LOCATION: 0.91 IN, DAM~CE LENGTH: O,5ri
CG121



LOCATION: 1.01 IN. DAMAGE LENGTH: 0,677

R23-5-i lox

R23-5-2 25X

* B-SCAN AT 1.04 IN,
G122



R2 3-6-1 lox

P23-6-2 25X

LOCATION: 1.11 IN. DAPAAGE LENGTH: 0. 700-

G123



lox

7- 2 25X

tev~~r*i~1.21 IN, DAMA~GE LENGUH: 0.734
G124



R23-8-1A ]Q

R2 3- 8-2A 25X

LOCATION: 1.31 IN. DAMAGE LENGTH: 0,832
G125



P23-8-IB I OY

P23-fol-2 25X

LOCATION: 1.31 IN, DAMAGE LENCTH: 0,832
G 126



R23-9-IA il

[23-9- 2A 2 5X

LOCATION: 1.41 IN, DAMAGE LENGTH: 0,007
r127



ft.- 3-9-IFAimA

P23-Oi-2B 25X

LOCATIONJ: 1.'41 IN. DACE LENVTH: 0. OfP7
G 128



LOCATION: 1,51. IN. PAFACE LENC-Til: 0. 02C

R23-10-1AI v

R23-1O-2A Y

B-SCAN AT CE1NTEF

G129



R23-iC-] p lox

P23-I C-2t, 25X,

LOCATION: 1.51. IN, DAMAGE LENGTH: O.22
G130



R23-11 -1AJ\n

R23-lI -2A 25 X

LOCATION: I.CI IN. DACE LENGCTH l?'
G131



P.23-1I -2P, 25X

LOCATION: 1.61. IN. DAM1AGE LENU~H: 0,8P2

G132



R2 3-12-1 lox

P23-12-2 2 5X

LOCATION: 1.71 IN. DAMP.CT LECT11: ,7F7
1'3 3



R23-1 3-1 lox

F21 12 25X

LDC/TIOfi: 1.81 IN, DAIAC[ LEVTH: nl,70'
GI 134



P23-14-1 lox

= 2 -. -7=

P23-1 4-2 2 5X

LOCATION: 1.91 IN, DAMAGE LENCTH: ,- i

GI 35



LOCATICH 2.01 IN. DAMACE LENGTH: r,3

R23-15-1 j OX

- 25Y,

it- -)12 )



R23-16-1lo

R23-16-2 2 5X

LOCATION: 2.11 IN, WIN~E LEN(CTfl: 0,571

G137



P23-17-i lox

P.23-17-2 25X

LOCATION: 2.21 IN, DAMAGE LEW(TH: O.3 C

G138



P23-18-

LOCATIONi: 2.31 D:, fIPJCF LENU~H: rP211l
G 139



R2 3- 19 -1 lox

R2Z"3 -.1-2 25X

7, 1



c -S CAI

CITWULATIVE EF-SCPAi

32-PLY SPEC: N F,-J 1, , 2Or CYCLES

G 141



2 5

LOC!ATI ON: 0,90 IN. PAtW"[ LHCTHl: 7'



N19-2-1 lox

MOM---?--

N19-2-2 25X

LOCATIONl: 1.08 IN. DAM~AGE LENrUTH: P,717

G143



LOCATION: !-IS IN, DAMACT LENGTH C).7f I

t-L -T to.

N 1 (9 225X

- B-SCAM AT 1.17 IN,
G144



N19-'4-1 lox

LOCATIONl: 1.28 IN. DMfIAGE LENGTH: r7 71
C145



-n --- 2

-K TM I j A7II



V Z-1

G 14 7



N19-6-2A 2 5X

B-SCAl AT CENTER

LOCATION: 1.148 IN.DAAG LEW(TH: 0.3



N19-6-1B Iny

N] g-F-2P 5

LOCATIONl: 1,148 IN. DMI~AGE LEFrTH: C..Clr

G 149



11 D7- 1A In v

r. 7-2f

UL C !' IIn',: I pp' 'PACfF I 'FT11.

G150



N-1 91-7-2PF

LOCA71ION: I% IN. D/ PU Hf: ~?



2 X
L~CkION 1.i m.r~ DA7"AC[ L[,;(Tf: 0, -37

G,152'



fla~ - a ~Jr~aJ~t~ b. lS7

LOCti4AT I~ ON IU NWAC LNG_

ca 15e 3 a~~~r~a

L f ts 4



IC'T I U~1. 7C ~ AA[ E~lH

)5X

- B-SCAn? IT 1,7[ IN.



NIP~-10-2 2
LOCAT ION: 1. OP IN, DMIAC[ L[NO-TH:~f

C155



*- 
2

111 mom 2

CA2 X



-7t.

312-2 5

LCTI ON 2 U I N PALF.C[ L[PTTH 2i

5 17



IN 9 -13-1 l ox

VNow

L.C/~T C:2.31P ,PA~ LF'THi . 172

(2 18



I~I - Oil

§ -1~ -225X

LOCATION: 2.28 IN, DANACE LENOTH: 0,2141

G; 159



LOCAI:2,30 IN, rP,"PC[ LENTfl "7

G1160



46r'.

C16



owow -- -

.pow,

Nl- 7-1tr

NK- 17-2 25X

LOCATIOll: 2,5S IN, PACE L[NICTH. n.17;

C162



. .~- - -. . ... ..... ---

Ni 9-18-2 25X

LOCATIONl: 2.03 IN. DAMAGE LENGTH: ONE TRANS CRACK THPu Two PLYS

G163



C-SCAN

CURULATIVE L-SCAN

32-PLY SPEC: JC-30 t15 = 28,000 CYCLES

G16 4



.7 - UWIJ-

J30-1-1 lox

117-1-2 2 5X

LOCATION: 0,811 IN, DAGE LEINC-TH: 0,217
C165



w- ~ -w NoAIit

J30-2-1 lox
-- -. now

J30-2-2 25X

B-SCAN AT 0.98 IN,



J30-3-1 lox

J30-3-2 25 X

LOCATION: 1.0h, IN, DAM1AGE LENIT 0,727
G1L67



25X

C1169



t - 1

J30-5-1 loX

LOCATION: 1.2L4 IN. DAMAGE LENC-TH: 0. 7F'4
G169



J30-F-1A 25)

LCCAT ICl, I IN. Ul"V pr1[PtTCTP: ,nF7

C OWL



J30-6-2B
25X

LOCUT IOr: ,34~ IN. DfA/GE LELWTK! 0,OE

Gl 71



11' - -1 i l

j 7( ]-r Y F ~ p ~ [1 1*



! 30-7-1 B 2 y

LOCAT I ON: 1.05 IN. DMJIArE LFNCMI: L 11)2

G17 3



J30-8-2Alo

BLCA7T ENE

-eAIN 171 N DfAELNGH \5



J 30- 8-1B i cx

3 ~f- P-25 X

LOCATION: 1.54~ IN, DWfAGE LENCTI:

G 17 5



13 ~- q 2 ~25X

LOCATIONI: L.UI IN. DAMlAGE LENCOTH 0,04i3
"176



* ---

LOCATION: I C,4 IN, DNAGE LF'WTI' rl P1

G177



KJ30-10-1 lox

.~ ~ ~ .* .* ... ......

J30-10-2 25X

LOCATION: 1.714 IN. DAMAGE LENGTH: 0.78]

G178



J-30-11-1

J30-11-2 ~ 25Y-~uhi

LOCAION w.8 IN, DW G -GR: 7

I~IJ 179



J30-12-2 25X

LOCATION: 1.9h IN. PAflAGE LENGTH: nl,74~3

C 180



.!3?-1 3-2 5Y

LOCCAT 1( 2 r". IN. PMr1P LF!ICB:



w wI

J30-1'4-1

130-14~-2

P.-SMY' AT 2.1E m.

LOCATI: 2.]", IN. PAGE LPIfll: C577

C182



J30-15-1 l ox

4~f~ul~1 Ji. .- *; --

J3-1- 25X

LOCTIN: .2 IN DUGELEGTH 028

~ C183



J 3C,- 16 -1 lox

J 30-1 I -2 25X

LCATIICK 2.34 IN, DAI2'ACE LENGTI! ONE TRANS PLY CRACK

G184



J30-17-1: lox

25X

Vf -' C



J3C-18-1 lox

J30- 3-225X

LOUAT 1,1 2.51t iN. DAMABL LE11IIP: ONE TRANS PLY CRACK

C 186



W- -Av - - iEh-

J30-19-2 2 5)'

LOCATICN: 2 Ct IIIN DAM[ 1LT ' 1'/

C187
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APPENDIX H

Comparison of Damage as Determined by

Holscan Ultrasonic C-Scan and DIB Enhanced X-ray
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APPENDIX I

Damage on Individual Layers of

Specimens Deplied after Fatigue Cycling



PLY I 00

1-5-2 1-5-3
PLY 2 450 PLIES 3 & 4,00

Figure Ila: Deplied 24-Ply Speciu~n IA-5 After 4,000 Cyles
(Plies 1 - 3)



PLY 5
-45 0 PLIES 6

& 7, 00

1-5-41-5-5

PLY &0,0
45

1-5-7

PLIES 12

1-5-8 1-5-9

Figure l1b: Deplied 24-Ply Specimen IA-5 After 4,000 Cycles
(Plies 4- )

13



PLIES 15

PLY 014 &16, 00
-450

1-5-10 1-5-11

PLY 17 PIS1
45 0 & 19, 0 0

1-5-12 1-5-13

PLY 20 PLIES 21
-45 0 W PI&-22, 00

1-5-141-5-15

Figure 11c: Deplied 24-Ply Specimen IA-5 After 4,000 Cycles
(Plies 10 - 15)
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1-5-16
PLY 23, 45 0

PY24,0 0

Figure ld: Deplied 24-Ply Specimen IA-5 After 4,000 Cycles
(Plies 15 - 17)

15



B--

PLY 1 00

H-8-2 H-8-3
PLY 2, 450 PLIES 3 &4, 00

Figure 12a: Deplied 2 4-Ply Specimen HA-B After 12,000 Cycles
(Plies 1 - 3)



H-8-4 H-8-5
PL 5, -45 UPLIES 6 & 7, 0 0

H-8-6
PLY 8, 450

Figure 12b: Deplied 24-Ply, Specimen HA-B After 12,000 cycles
(Plies 4 - 6)

17



10, 0000

if-8-7H-8-8

PLIES 12
& 13, 0 0PL014

H- H-8- 10

PLIES 15PL 
17& 16, 00

H-8-1

Figure T2c: Deplied 24 -Ply Specimen 1{A-8 After 12,000 Cycles

(Plies 7 - 12)
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H-8- 13 H -8-14

PLIES 18 &19, 0 0 PLY 20, -45 0

H-8-15

PLIES 21 & 22, 0 0

Figure 12d: Deplied 24-Ply Specimen HA-8 After 12,000 Cycles
(Plies 13 - 15)

19



PLY 23, 450

PLY 24, 0 0

Figure 12e: Deplied 24-Ply Specimen HA-8 After 12,000 Cycles
(Plies 16 - 17)

"'0



Q-4-1 00 Q-4-2 0
PLY 1, PLY 2, 45

Q-4-3 0Q-4-4PLY 3, 90 
0PLIES 4 & 5, -450

Q-4-5 0-4-6
PLY 6, 900 PLY 7, 450

Figure 13a: Deplied 32-Ply Specimen OA-4 After 1,000 Cycles
(Plies I - 6)

-Eli



-4-7 Q-4-8 0
'3 & 9 0 PLY 10, 45

Q-4-9 Q-4-10

PLY 11, 90 PLIES 12 & 13, -45

Q-4-11 Q-4-12

PLY 14, 90' PLY 15, 450

Figure 13b: Deplied 32-Ply Specimen QA-4 After 1,000 Cycles
(Plies 7 - 12)
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w vi
Q-4-13 01 -4-14

PLIES 16 & 17, PLY 18, 45

Q-4-15 Q-4-16
PLY 19, 900 PLIES 20 & 21, -450

Q-4-17 Q-4-18
PLY 22, 900 PLY 23, 45 0

Figure 13c: Deplied 32-Ply Specimen QA-4 After 1,000 Cycles
(Plfes 13 - 18)
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Q.-4-19  Q-4-200
PLIES 24 & 25, 0 0 PLY 26, 450

4.

Q-4-2 1 0Q-4-22

PLY 27, 00 PLIES 28 & 29, -450

Figure 13d: Deplied 32-Ply Specimen QA-4 After 1,000 Cycles
(Plies 19 - 22)
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Q-4-23 Q-4-24
PLY 30, 90 PLY 31, 45 0

Q-4- 2 5

PLY 32, 00

Figure 13e: Deplied 32-Ply Specimen QA-4 After 1,000 Cycles

(Plies 23 -25)



APPENDIX J

Statistical Analysis of Panel Variability



APPENDIX J

STATISTICAL ANALYSIS OF PANEL VARIABILITY

Due to the large number of specimens required for Task II, nine panels of

each laminate type were fabricated. Considerable care was taken to produce

panels under nearly identical conditions. All foreseeable variables were

evaluated and specimens not meeting strict tolerance requirements were dis-

carded as discussed in Volume I. The Task II static data were evaluated

using several statistical procedures to determine whether the nine panel

samples can be assumed to have come from the same population. Static data

were normalized on the mean for each group of tests outlined in Test Plan

Items 1-4, 6, 7 and 9 (See Table II of Vol. II). These results are presen-

ted in rank order by panel in Tables J1 and J2. The Wald-Wolfowitz 0
1 )

test which determines whether two samples come from populations having

identical cumulative distribution functions was performed for the 24-ply

and 32-ply panel data sets.

The two series of data points from 24-ply panels A and D, having the lowest

and highest means, respectively were pooled in rank order. If the strength

value was from panel A, a 0 was entered, if from panel D, a 1. This

resulted in the following array for the combined 34 data points.

1. 2 4 5 6 7 8 9 10 11 12 13 _4 15 16 17 18 19 20 21 22 23 24 25 26 27 28
000011110 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1

2j. _L _ 2 U 3 4
*1 1 1 1 1 1 1

If /u - u/ t/2, the hypothesis that the two samples come from
u

4 populations having identical cumulative distribution functions (c.d.f's) is

rejected at the alevel; where u is the number of runs and U and a 2 are theu

mean and variance of u respectively. For this case /u - U/ = 5.76 and au t

0/2- 5.55. Therefore, the hypothesis is rejected at the 5% risk of error.

J2



Table J1 Normalized Static Data a Rank Ordered By
Panel for the 24-Ply Laminate - Task 11

PANEL IDENTIFICATIONS:

A B C D E F G H I

1. 0.813 0.932 0.927 0.928 0.837 0.870 0.897 0.837 0.925

2. 0.871 0.974 0.967 0.931 0.890 0.893 0.939 0.901 0.953

3. 0.915 0.981 0.968 0.932 0.933 0.893 0.947 0.910 0.955

4. 0.923 0.986 0.971 0.955 0.960 0.919 0.960 0.911 0.957

5. 0.962 0.9P7 0.975 0.991 0.964 0.943 0.984 0.947 0.975

6. 0.968 0.996 0.978 1.000 0.976 0.977 0.986 0.955 0.989

7. 0.968 1.011 0.986 1.009 0.983 0.980 0.986 0.964 0.993

8. 0.973 1.014 0.989 1.021 0.995 0.990 0.992 0.965 0.994

9. 0.975 1.016 0.992 1.070 0.999 0.995 0.994 1.018 1.008

10. 0.980 1.018 0.994 1.071 1.010 0.997 0.997 1.019 1.011

11. 0.990 1.022 1.009 1.073 1.011 1.014 1.000 1.034 1.014

12. 0.993 1.025 1.012 1.075 1.020 1.016 1.007 1.077 1.017

13. 0.999 1.033 1.019 1.087 1.033 1.024 1.018 1.174 1.018

14. 1.002 1.044 1.057 1.100 1.039 1.030 1.040 1.019

15. 1.013 1.065 1.067 1.144 1.071 1.035 1.048 1.038

16. 1.014 1.083 1.104 1.094 1.046 1.050 1.091

17. 1.020 1.140 1.126 1.062 1.052

18. 1.034 1.062 1.065

19. 1.035 1.110 1.076

20. 1.132 1.114

0.971 1.012 1.009 1.026 0.997 0.999 1.008 0.978 0.997

SD 0.056 0.037 0.054 0.069 0.071 0.070 0.052 0.087 0.040
CVZ 5.81 3.61 5.38 6.71 7.08 7.01 5.13 8.92 3.97

a - Includes all test data from Task II Test Plan Items 1-4, 6, 7 and 9
(See Table 11 of Vol. II)

NOTE: X -Mean, SD -Standard Deviation, CV% Coef. of Var. %

J3



Table J2 Normalized Static Data' Rank Ordered By

Panel for the 32-Ply Laminate - Task 11

PANEL IDENTIFICATIONS:

3 K L M N P Q R S

1. 0.883 0.947 0.882 0.878 0.782 0.927 0.913 0.904 0.857

2. 0.897 0.953 0.937 0.898 0.918 0.967 0.927 0.919 0.920

3. 0.919 0.960 0.956 0.938 0.934 0.972 0.942 0.923 0.924

4. 0.928 0.962 0.969 0.953 0.939 0.976 0.945 0.929 0.939

5. 0.939 0.965 0.972 0.954 0.949 0.983 0.947 0.933 0.954

6. 0.953 0.976 0.977 0.961 0.958 0.985 0.963 0.943 0.954

7. 0.965 0.977 0.978 0.971 0.960 0.995 0.964 0.948 0.956

8. 0.988 0.980 0.979 0.987 0.965 0.995 0.965 0.964 0.986

9. 0.993 0.989 1.006 0.987 0.979 1.006 0.968 0.964 0.989

10. 0.998 0.990 1.008 0.997 0.981 1.007 0.968 0.983 0.990

11. 0.999 0.991 1.009 1.008 0.984 1.019 0.995 0.987 0.991

12. 1.003 0.997 1.026 1.028 0.985 1.031 0.999 1.006 0.992

13. 1.009 1.004 1.030 1.059 1.001 1.039 1.007 1.007 1.000

14. 1.015 1.008 1.030 1.065 1.002 1.044 1.018 1.019 1.006

15. 1.019 1.009 1.035 1.068 1.004 1.050 1.059 1.031 1.009

16. 1.050 1.012 1.055 1.085 1.008 1.051 1.063 1.035 1.012

17. 1.053 1.018 1.061 1.102 1.014 1.087 1.064 1.049 1.038

18. 1.073 1.025 1.062 1.157 1.016 1.091 1.079 1.085 1.053

19. 1.076 1.043 1.080 1.176 1.045 1.120 1.082 1.117

**j20. 1.049 1.062 1.156 1.168 1.154

21. 1.144 1.072

22. 1.192 1.140

j C.987 1.009 1.003 1.014 0.986 1.025 1.002 0.995 0.976

SD 0.056 0.059 0.049 0.081 0.068 0.056 0.065 0.069 0.047

CV% 5.72 5.83 4.92 8.01 6.92 5.50 6.52 6.89 4.80

a - Includes all test data from Task 1I Test Plan Items 1-4, 6, 7 and 9
(See Table 11 of Vol. 11)

NOTE: X*Mean, SD *Standard Deviation, CV? Coef. of Var. 2
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However, the hypothesis cannot be rejected at the same level when the test

is performed on the second highest (B) and second lowest (H) panels.

Performance of the Wald-Wolfowitz test on the 32-ply panels having the

lowest (S) and highest (P) means yields the following array for the

combined 38 data points:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
00 0 1000 1 -71 -1 -1 1 0 -0 0 -0 -0 -1 -1 0 1 0 1 0 0 1 1

29 2Q Ll 2. 2l3 35 36 37 3
0 1 1 1 1 0 1 1 1 1

where a 0 was entered if the value came from panel S and 1 if from D. Here

/u - U/ = 3.95 and atu, 2 = 5.94. Hence, the hypothesis that the samples

have identical c.d.f.s cannot be rejected for a risk of error of 5%. For

the 32-ply panels, then, it appears likely that the strength data for all

of the panels belong to the same population.

Since 24-ply panels A and D appeared to have different c.d.f's several

additional tests were performed.

Applying the Chi-squared test to samples A and D indicates that there is a

high probability (at a = 0.05) the distributions are normal. Thus the

F-test and T-test were then applied.

The quantity F is the ratio of the two sample variances,

F S 2 /SD2
A D

<"1 If the variances of samples A and D are identical at a significance level

of a = 0.05, F should be between the boundaries defined by F0975 and

1/F0. 97 5, for NA-1 and ND-1 degrees of freedom. F does lie in this inter-

val since F = 0.670, 1/F0. 97 5 z 0.37 and F0 .9 7 5  2.88. Thus the variances

can be assumed to be the same within 0.05 risk of error. This indicates

J5



the two samples may belong to the same population, i.e. have the same

scatter or dispersion.

The T-test was used to determine whether the means differ significantly.

The absolute differences between the means is calculated by:

If the means do not differ, D should not exceed u where

nnDSp3 /nA + n

A+ D
u = tO.9T5  n AnD

for a= 0.05. For this case D- = 0.055 and u = 0.0438. Since Di>u there is

reason to believe samples mli~t no, be from the same population.

Based on these three tesi, Wald-Wolfowitz, F-test and T-test the statement

cannot bi made that panel A and D data have the same cumulative distribu-

tion functions within c O.C3 risk of error.

This does not necessarily mean that the samples are from different

populations although that possibility is definitely suggested. The many

assumptions implicit in this type of statistical evaluation must be

considered. No attempt was made to include fatigue data because the

failure modes differ. However, all static data including tension,

icompression at high and low strain rates and residual strength data were

normalized and combined. This in itself is a questionable procedure.

Variables affecting stability under compression loading will not

necessarily influence tension strength similarly especially for different

strain rates and damage sizes. Data were pooled in order to obtain an

* adequate sample size to perform some evaluation of panel variability. If

the data pooling were acceptable, it appears that except for the 24-ply

panels A & D, all other panels are statistically identical. In fact, if

the 24-ply panels were ranked by mean strength from low to high (A, H, E,

J6



I, F, G. C, B, D) all adjacent panels would be identical. The panels form

a smooth distribution with A and D at the tails. Thus a single "bad" panel

cannot be identified.
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DISCUSSION OF WEIBULL FUNCTION

AND PARAMETER ESTIMATION PROCEDURES
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APPENDIX K

K.1 GENERAL DISCUSSION OF WEIBULL FUNCTION

In Weibull's representation of the statistics of fatigue, there are two

random variates at each stress test condition. The first of these variates

is the ordered sequence of the numbers of cycles to failure for each test

result, ni:
nhi: (nI ,  n 2 9 n3  . . . N )

The second random variate, x, is continuous and is the argument of the

Weibull survivorship function, or probability of survival, expressed as

P(x) = exp (-((x-e)/(v-e)) k, (KI)

where

x > e, v > e, k > 0, P(e) = 1, P(v) = 1/exp(l)

The connection between the random variates, ni and x, is entirely empirical.

In practice, numerical procedures are used to derive the three Weibull para-

meters k, e, and v by means of the approximation:

P(x) = 1 -i/N when x =ni, (K2)

or P(x) = 1 - I/(N + 1).

For Equation ( , the mean of the sample set is given by K1.

xz e + (v-e) F(1 + 1/k) (K3)
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the median by:

U 1/k~x = e + (v-e)(loge 2)
l/k (K4)

and the mode by:

= e + (v-e)(1-1/k)1/k (K5)

wherer( ) indicates the Gamma function.

During the past twenty-five years, a number of names have been applied to

the parameters. In general, parameters e an v are considered as scale

parameters or factors and the exponent k as a shape parameter. The term

threshold parameter is usually applied to parameter e and the term charac-

teristic value to v. In analysis of composite data, k is frequently denoted

bya and v by F. The scale parameter, e, is often referred to as the minimum

life estimate. With this choice of words, e is suggested on physical

grounds to be e > 0. Many authors have reasoned further that since e << ni,

i = 1, 2, 3, . . .N, the Weibull survivorship function can be appropriately

reduced to dependence on two parameters, k and v, with e = 0 arbitrarily.

An argument against this practice will be described in this section.

The influence of the shape parameter k can be explained as follows. Define

a reduced variate Z as:

1 Z = (x-e)/(v-e), Z > 0, dimensionless, (K6)

and express the probability of survival function as:

P(x) = exp 1-Z kj. k > 0, (K7)

where P(Z) z 1/exp(l) when Z=1
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and P(Z) 1 1 when Z 0 0, for all k,

If k < 1, this is sometimes interpreted as implying that the material

develops resistance to fatigue as the number of load cycles is increased.

If k = 1, the Weibull survivorship function reduces to the constant failure

rate relation commonly used in reliability studies. If k > 1, one can

inquire whether the test material experiences progressive damage as numbers

of load cycles are increased.

Figure K1 illustrates the manner in which P(Z) is dependent on the shape

parameter k for the range of the reduced variate Z from zero to two.

Empirical evidence does not support the interpretation that k might be a

smoothly increasing function of stress amplitude. For practical purposes,

in the case of structural fatigue, the region of Figure KI of most interest

to designers is bounded as follows:

(a) Above by the limit P(Z) 1.0

(b) Below by the median P(Z) 0.5

(c) On the left by the curve P(Z) = exp [-Z]

d) On the right by the curve P(Z) : exp [-Z 10].

K.2 WEIBULL ANALYSIS PROCEDURES

There are three principal procedures which have been used to determine the

Weibull parameters (k, e, and v) for a given data set. These are: the

moment estimation (ME) method; the maximum likelihood estimation (MLE)

procedure; and some form of the linear regression (LR) procedure. All three

methods are also used to determine the unknown parameters of other types of

fitting functions. The ME method principally consists of equating several

population moments (equal to the number of unknown parameters) to the sample

K4
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moments. The KLE method consists of setting the partial derivatives of the

logarithm of P(X), with respect to the parameters sought, equal to zero. In

the LR procedure, the Weibull survivorship function is reduced to a linear

equation. For the LR method, the solution for a two-parameter Weibull

function is straightforward, but in the three-parameter case the solution is

found by optimization of the correlation coefficient or by matching the

sample skewness coefficient.

When one of the above described procedures was originally selectedK 2 for

analyzing graphite/epoxy composite strength and fatigue data, consideration

was given to two thoughts. First, how well does the resultant Weibull

survivorship function represent the original data set? Second, what, if

any, extrapolative potential exists for the resultant function? Considera-

tion of these two questions led to the selection of the LR procedure. The

reasons for this selection will be described in detail along with references

to recent work which supports the original choice.

Both the ME and MLE methods require homogeneous samples. The reason for

this requirement is that in the ME procedure the Weibull density function is

integrated while in the MLE procedure, partial derivatives of the function

are obtained. In this program, requiremen of homogeneity was not assumed,

a priori, to be necessarily met by sample information obtained from fracture

data of composites. A procedure was desired which would be sensitive to the

possible existence of multicomponent strength and fatigue life data. Such a

requirement appears to be met by a LR procedureK3 . The ME method can result

in significant errors in estimation of k, e, and vK3 and such errors

increase as k increases. In the case of two-parameters, errors in estima-

tion of k and v increase linearly with the true value of e (assumed to be
K3

zero) and can be greater than 100% when e > v For the MLE procedure,

three difficulties are encountered. First, the MLE solution of a data set

is often a local maximum, but is not necessarily the maximum likelihood

estimateK -K7 . Weibull and WeibullK3 found in a study of 300 random samples
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of 10 and 20 points each that approximately half of the estimates were not

the maximum likelihood estimate, but were local maximums. Second, valid

data sets can occur for which convergent solutions are not forthcoming,
particularly for three parameter solutions~~ Third, if a given data set
which actually belongs to a three-parameter Weibull population is assumed to

be a two-parameter population (e = 0), the estimates of k and v can be
significantly higher than their true values K3.

As previously alluded to in the analysis of graphite/epoxy composite data,

the parameter e is often set equal to zero. This practice greatly simpli-

fies the mathematics especially for MLE procedures; however, there are

strong objections against such a practice l 3K. These have already been

discussed with reference to the ME and M'LE procedures and are based upon the

statistical error induced by the practice of setting e =0. In summary, the

three-parameter Weibull fit can be shown to fit the actual data set better
than the two-parameterK2 K3K However, objections against the

three-parameter Weibull fitting procedure are often raised upon the grounds

that the parameter e may be found to have a negative value, particularly for

a fatigue data set. The objection is thus raised that actual coupons can

not have a finite probability of failure when the applied load is zero.

Setting e equal to zero solves this problem. Setting e equal to zero is

principally related to the question of the extrapolative capability of the

Weibull function for graphite/epoxy composite fracture data.

u1 Setting e = 0 results in the probability of survival, PS, being equal to 1
.A when no load is applied to a coupon. While this is a reasonable expecta-

tion, the accuracy of fit In the range of the data is often sacrificed. At

the same time, the resultant extrapolative estimates of strength and fatigue

life at P53 > 0.90 may still be intolerably conservative. Therefore, in many

cases by setting e a 0 little may be gained, and much lost. This problem is

most critical for fatigue life data.
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The problem of correctly extrapolating composite fatigue data is presently

one of conjecture. This is due to three deficiencies: 1) lack of large

laboratory data sets for evaluating extrapolation from small subsets; 2)

lack of experimental data which correlates laboratory coupon results with

structural test results; 3) lack of field service experience. Therefore,

while e should be greater than or equal to zero if it is truly a threshold

parameter, correct values can not be determined at this time. Thus, setting

e = 0 reduces the accuracy of our calculated fit to the data set but most

likely results in extrapolative predictions being too conversative.

A possible solution to these problems has been suggested by Bowie, Besari,
K7

and Trapp and will be discussed below. The resultant analytical solutions

closely fit the data and avoid the problems of ME and MLE solution

procedures. The resultant functions are not of extrapolative value, but

this is not considered to be pertinent for comparison of data sets.

Significant statistical analysis effort combined with extensive experimental

investigations are needed before any extrapolative procedure can be

developed and used with confidence. Hence, using a procedure which does not

allow for extrapolation is not considered at the present time to be

detrimental.

K.3 DESCRIPTION OF SELECTED ANALYSIS PROCEDURE

The particular form of Weibull analysis used in this report has been dis-A K7,K8
cussed In detail elsewhere 7  . Essentially, this procedure which consists

of linear regression analysis in Z variate space, is similar to that used by
K3

Talreja . The analysis procedure used is described in this section.

In the analytic procedure used in this program, an initial estimate was made

of the probability of survival based directly on the test results, in a

staircase manner, P(ni), i 1, 2, 3, . . . N,
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where P(n1) = 1-1/N

P(n 2 1-2/N

P(n3) 1-3/N

p(n ) =1-N/N = 0.

The function P(n1 ) = 1 - i/N was selected instead of the alternate function,

P'(ni) = 1 -i/(N+1). The difference (P'(n ) - P(ni)) diminishes as N in-

creases. Thus for N equal to or greater than approximately 15, the

difference is undetectable. However, if extrapolations to probability of

survival in the range above 90% are to be attempted, the choice of P(ni)

rather than P'(n i ) as initial distribution is the more conservative

approachK8 . This is especially true for N less than 15.

With the above approach, the initial distribution is defined as:

P(n) = 1 - /N

and P(n+) = 1 -i/N if n1+ 1  n fi

otherwise P(n+ 1) = 1 - (i+I)/N

1" i In most other analysis procedures, P'(ni) = 1 - i/(N+I) is selected as the

initial description without regard to replication of the type: ni+1 = n1 .

The choice of assigning the same initial probability to different coupons

with the same ni was considered appropriate because they do actually form a

local mode, within the limits of testing accuracy, of the sample distribu-

tion obtained by experiment.
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The appropriate variables of Equation Ki are found by forming N-i relations:

P(n) 1-11N = exp (~(nl e)/(v-e))k]

Pn2 1-2/N exp ((n 2-e)/(ve)) k]
(K8)

P - 1-(N-1)/N =exp ((~cnl e)/(v-e)) k

The last relation for N is not used since P(N) = 0.

The parameters of Equation 1 were found by reducing the relationships Of

Equation 8 to the linear equation:

Y = bX+a (K9)

The three-parameter Weibull linear equation is:

I-in P(X) 1 1/k =bX+a,
where e =-a/b (K1 0)

and V (1.ebe)/b.

A For the two-parameter Weibull function (e 0), the linear equation is:

In(-ln(p(X))) = bin (x) + a, (KIu)

where k= b

and v =exp(-a/b).

*A linear regression method is used to determine k, e, and v. The initial
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order distribution is:

P(X): 1-i/Np, 1 1, 2, 3 N .Np (K12)

Regression coefficients are found by least square analysis of N -1 equa-

tions such as:

I-n (1-i/Np) I 1/k =bXi + a, i = 1, 2, 3 . .N P-1. (K13)

The sample correlation coefficient, R, is calculated as:
M M M (1:14)

M Yi(aXi + b) - Y -(aX 1 * b)

R - 1-1 i-i1 =1

[ 2 2 11/2

{HZY2 H''"' ' (aX, 4 ) (aX ) + Hb

where M = Np- 1

The coefficients of linear regression and alternative correlation coeffici-

ent r are calculated by means of the following steps:

M X 2] 1/2
,iM X

Sx - (Ml)

1 1/2

M YI Y i
_"Sy m H (-l

K11
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MI
b i

H /M
i Xi /

am E2 - ( X 2

r - b sx/sy

The standard deviation of the linear regression is calculated by means of

the expression:

s = I1 Sy2 + (1 - r2 ) 1/2

The values of k, e, and v are found by iterating on 1/k in Equation K13 and

maximizing R in Equation K14. An alternative procedure would be to match

the sample skewness to the Weibull function skewness by iteration of 1/k.

The coefficient of skewness is given by:

r" (1+3/k) - 3r(1+1/k)rl(+2/k) + 213(1+1/k)

"" .51(r(1+2/k) - r(1+1/k))

and recalling that r ( ) denotes the Gamma function.

There are two primary difficulties with the method employed. First, the

resultant Weibull functions could be used to imply that in some three-para-
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meter cases and at a given extrapolation, high probability of survival (Ps >

0.95), fatigue life decreases as applied stress amplitude decreases.

Second, in the case of two-parameter analysis, probability of survival func-

tions tend to predict overly conservative extrapolated fatigue lives,

particularly at low applied stress amplitudes. Both of these difficulties

refer to the extrapolative capability of the resultant functions. This is

not considered a problem for comparing the data sets, and as discussed in

Section K.2, extrapolation of the data does not appear to be presently

feasible.

K.4 ALTERNATIVE PROCEDURES

Two other procedures are available for analyzing fracture data. They are

the Standardized Variable Estimation (SVE) methodK 3 and the Modified Double

Expotential Function (MDEF) methodK7 .

In the SVE methodK 3 the standardized variable Z is defined as in Equation K6

for a Weibull survivorship function or as:

z - (K16)
v

for a Weibull probability of failure function. Thus, as mentioned in

Section K.1, the order statistics Z are independent of e and v and depend

only on the shape parameter k. The expected value, EZi, median, MZi, and

variance, VZi. of the order statistic Z have been derived by Lieblein. The

characteristic values of Zi depend only on the sample size, N, and the shape
K3

parameter, k . From Equation K16, we obtainK3:

X e + v EZ (K17)

or X :e + v MAI.  (K18)

Equations K17 and K18 can be solved by linear regression. The shape

K13



parameter k is the value for which the correlation coefficient is a

maximumK3 . The parameters e and v are foLid as the X- intercept and slope

of the best fit lineK3 . If the sample data belong to different populations,

this will result in the (Xi, EZi) and (Xi, MZi) scattering about different

K3
straight linesK3

TalrejaK 3 found that the SVE method provided accurate estimates of k, e, and

v, for low values of k. At higher k values, the method often gives negative

estimates of e. The procedure gave more accurate estimates of the para-

meters than the ME and MLE methodsK3 .

The HDEF is based upon the double exponential function of GumbelKI. In this

procedureK7 , for a set of sample fatigue lives, Np, the initial diqtribution

is defined by:

P(Xi) 1 - i/(N + 1) (K19)P
and P(x) by:

P(X) = - Exp [-Exp[-ao (X-u)]. (K20)

For lives greater than u, the above function is used as described by Gumbel

Ki• For lives less than u, a is a function of the life, X, where:

a() c n u - ln X,,] ,

oIn X - n X 0 (821)0

The parameter X is defined as the threshold fatigue life. For X < Xo, P
00 S

is defined as equal to unity. The modified double exponential function

(MDEF) can be solved by ME, MLE, or LR procedures. The best procedure

K7
appeared to be linear regression . The MDEF function was found to not only

fit the sample data with high correlations, but to provide procedures for
K7

exploration of data extrapolation accuracy
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